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This talk is expected to be streamed as a plenary ICM talk.
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Why is everyone talking about this 2014 comedy show clip?

This is when Stephen Colbert (comedian—in character) told Edward
Frenkel (mathematician) that he HATED MATH!

You won’t believe what happened next!
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Frenkel: When people say “I hate math” what you’re really saying is, “I hate the
way mathematics was taught to me.” Imagine an art class in which they only
teach you how to paint a fence or wall but never show you the paintings of the
great masters. Then of course years later you’re going to say, “I hate art.....”
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Colbert: But in math don’t I have to know a fair amount of high end math to
appreciate the work of the masters? It’s almost as if you could show me a
painting by a master but I don’t have eyeballs yet. Don’t you need to grow the
math eyeballs to see the equations as beautiful?
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Random surfaces

Today: Grow math eyeballs we need to see/understand random surfaces.

Big subject: combinatorics, graph theory, geometry, analysis, quantum field
theory, statistical physics, representation theory, probability, string theory, etc.

Using literal eyeballs: Right pictures to draw? Simulations to view?

Metaphorical eyeballs: How have different pictures of the same object
motivated different mathematical formulations? How are they all related?

Also: Random paths? Random trees? Random non-self-crossing paths?

Google What is a random surface? to find my ICM Lecture Notes.

261 references including 15 or 20 survey articles by prominent researchers.

Long list only scratches the surface (sorry for pun!) of a very large field.

Google Scott Sheffield for homepage with these slides plus code for figures.
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When student asks: what’s the “canonical” random path?

INSTRUCTOR: Consider the simple random walk on Z. At each time step a coin
toss decides whether position goes up or down. If you shrink the graph horizontally
by a factor of C and vertically by a factor of

√
C , then the C →∞ limit is a

random path called Brownian motion (a random function from R+ to R).

20 40 60 80 100

5

10

15

STUDENT: Great! But can you define Brownian motion directly in the continuum?

INSTRUCTOR: Sure! Fix 0 = t0< t1<. . .< tn. Specify the joint law of
B(t1), . . . ,B(tn) by making increments B(tk)−B(tk−1) independent normal random
variables with mean 0, variance tk−tk−1. Extend to countable dense set
(Kolmogorov extension), then all t (Kolomogorov-Čentsov).
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When student asks: what’s the “canonical” random path?
STUDENT: Are there other natural ways to characterize Brownian motion?

INSTRUCTOR: Brownian motion is canonical in that it is the only random path
with certain symmetries (like stationarity/independence of increments). It is
universal in that (per central limit theorem) it is a limit of many discrete walks. It
comes up everywhere. Finance, physics, biology, political science, PDE theory, etc.

STUDENT: What if I want a random path embedded in Rd?

INSTRUCTOR: Use a vector
(
B1(t),B2(t), . . . ,Bd(t)

)
of independent Brownian

motions. For example, here’s a Brownian loop (Brownian motion conditioned to
return to origin) in the case d = 2.

The d = 2 case is especially interesting. Lawler, Schramm, and Werner (ICM 2006
Fields Medal) proved Mandelbrot’s conjecture that the outer boundary of this loop
is a random curve (a form of “SLE”) with fractal dimension 4/3.

The student is happy. Now imagine a similar dialog for random surfaces.
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Student asks: what’s the “canonical” random surface?
INSTRUCTOR: Take a uniformly random triangulation of sphere with n triangles:
i.e., among all ways to glue n triangles along boundaries to make a topological
sphere, choose one at random. Here’s a 30,000-triangle example by Budzinski given
a 3D “spring embedding.” The n→∞ limit is a random fractal surface called the
Brownian sphere. Also a peanosphere, a pure Liouville quantum gravity sphere and
a conformal field theory.

STUDENT: You just listed 4 things! Which one is the n→∞ limit of this picture?

INSTRUCTOR: They all are! The difference comes down to the features of the
limit we keep track of. View them as different aspects of the same universal object.
Four blind mathematicians feel the surface of an elephant and describe four things:
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Brownian sphere Multipoint formalismPeanosphere LQG sphere

1. Brownian sphere: a random metric measure space constructed from the so-called
Brownian snake.

2. Peanosphere: a mating of continuum random trees that encodes both a surface
and an extra tree and/or collection of loops drawn on top of it.

3. Liouville quantum gravity sphere: a random fractal Riemannian surface. Areas,
lengths and other measures are given by exponentials of a Gaussian free field φ.

4. Conformal field theory: a collection of multipoint functions representing
(regularized) integrals of products of the form

∏
eαiφ(xi ) w.r.t. a certain infinite

measure. The infinite measure is the Polyakov measure which is the product of an
unrestricted-area measure on LQG spheres (with defining field φ) and Haar measure
on the Möbius group PSL(2,C) (to select an embedding in C).
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Technical point

Unit area Brownian/Peano/LQG-sphere: a sample from a probability
measure dS on a space of unit area sphere-homeomorphic surfaces.

Unrestricted-area Brownian/Peano/LQG-sphere: sometimes it is natural
to rescale by a random amount, so the area A is also random.

With k ≥ 0 marked points on surface natural measure is A−7/2+kdA.

Exponent motivated by discrete models: number of triangulations with n
faces and k marked points scales like Cβnn−7/2+k for model-dependent
constants C and β. Natural to weight the counting measure by β−n so we are
left with power-law decay. Unrestricted-area discrete measure (appropriately
rescaled) converges to the measure above as area-per-triangle ε goes to zero.

Off-critical case: If we replace β by the “off-critical” β(1 + εµ) then the
limit is A−7/2+ke−µAdA, which is finite if µ > 0 and k ≥ 3. The e−µA factor
is common in physics formulations, e.g. Polyakov’s early work where µ is
called the cosmological constant and motivated by Liouville’s equation.
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Student asks: what’s the “canonical” random surface?

STUDENT: Do I have to learn all four viewpoints?

INSTRUCTOR: A lot of good work has been done by people fluent in only one.
But all four have important applications—e.g. to metric properties (Brownian
sphere), statistical physics (peanosphere), conformal probability (LQG sphere), and
quantum field theory (CFT).

STUDENT: Are they characterized by simple axioms like Brownian motion is?

INSTRUCTOR: Yes. But each viewpoint comes with its own axioms, its own history
and motivation, its own surveys. The proofs that they agree are long and involved.

STUDENT: Can any of the viewpoints describe a random surface embedded in Rd?
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1. BROWNIAN SPHERE:
A RANDOM-METRIC-SPACE
LIMIT OF RANDOM PLANAR

MAPS
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Planar maps and Tutte’s enumeration
Planar map: finite graph embedded in plane, where two embeddings are equivalent
if an orientation-preserving homeomorphism of C∪ {∞} takes one to other. Figures
below isomorphic as graphs but represent different planar maps.

Combinatorics: planar map determined by graph plus “clockwise cyclic ordering”
of the edges surrounding each vertex. Number of planar maps with n edges is finite.

Root: To eliminate the ambiguity from non-trivial automorphisms, specify “root”
by fixing an oriented edge.

Country map to planar map: given map of, say, South America, can draw vertex
in center of each country, edge between countries with non-trivial border.

Famous 4-color conjecture: all planar maps 4-colorable. Formulation by Guthrie
(1852), progress by Tutte, computer-assisted proof by Appel and Haken (1976).

Tutte 1962-1963: Number of rooted planar maps with n edges is 2
n+2
· 3n

n+1

(
2n
n

)
.

Asymptotically: Cβnn−7/2+k with C = 2√
π

and β = 12 and k = 1.

Triangulation: planar map in which all faces are triangles.

Quadrangulations: planar map in which all faces are quadrilaterals.
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Brownian sphere: metric space limit of random planar map

Uniformly random planar map: choose uniformly from the set of all planar maps
with fixed number of edges. (Similarly define uniformly random triangulation, etc.)

Brownian sphere: interpret uniformly random quadrangulation with n faces (or
other variant) as metric measure space, take weak Gromov-Hausdorff-Prokorov limit
to get continuum random metric measure space. (See Cori-Vauquelin-Schaeffer,
Marckert-Mokkadem, Le Gall, Miermont, Chassaing, Paulin.)

Benedikt Stufler’s simulations: color vertices by their mean distance to others
https://www.dmg.tuwien.ac.at/stufler/gabmanim.html
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2. PEANOSPHERE: A MATING
OF RANDOM TREES
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Warmup: matings of deterministic fractal trees

Idea of mating: Both the Brownian sphere and peanosphere are defined in the
continuum as “matings of random fractal trees.”

Warmup: Before getting into that, consider matings of deterministic fractal trees.

Julia sets (Julia 1918, popularized by Mandelbrot in 1980’s): Set K of points
that remain bounded under repeated application of φ(z) = z2 + c (where c is fixed).

Interesting obsevation: φ fixes K and is also a 2-to-1 conformal map from the
complement of K to itself. The φ pre-image of a small ball intersecting K is two
small blobs containing K . Pre-image of that is four small blobs, etc. This accounts
for approximate self-similarity.

Mating Julia sets: Two Julia sets can be “mated” (glued together along their
boundaries) to make a sphere. (Douady 1983, Milnor 1994)

Arnaud Chéritat’s simulations:
https://www.math.univ-toulouse.fr/~cheritat/MatMovies/
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c = I; S = 2000; A = Table[0, {j, 1, S}, {k, 1, S}]; For[i = 0, i < S, i++;

For[j = 0, j < S, j++; count = 0; x = 3 (i I + j)/S - 1.5 - 1.5 I;

While[Abs[x] <= 3 && count <= 50, x = x^2 + c; ++count]; A[[i, j]] = count]]; ArrayPlot[A/25, ColorFunction -> "Rainbow"]
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Student asks: what’s the “canonical random tree”?

INSTRUCTOR: Aldous (1993) constructed continuum random tree (a.k.a.
Brownian tree) from a Brownian excursion. You start with graph of the Brownian
excursion and then identify points connected by horizontal line segment that lies
below graph except at endpoints. Result is a random metric space (distance
measures “how far up and down” one has to go.

STUDENT: Is there a discrete analog of this?

INSTRUCTOR: Yes! Just consider a tree embedded in the plane with n edges and a
distinguished root. As one traces the outer boundary of the tree clockwise, distance
from root performs a simple walk on Z+ with 2n steps, starting and ending at 0.

Bijection between n-vertex rooted planar trees and simple walks on Z+ with 2n
steps, starting and ending at 0.

Brownian tree is the (limiting) “uniformly random planar tree” of a given size.
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MATING RANDOM TREES
X ,Y independent Brownian excursions on [0, 1]. Pick C > 0 large so that the graphs of
X and C − Y are disjoint.

t

Xt

C−Yt

Identify points on the graph of X if they are connected by a horizontal line which is
below the graph; yields a continuum random tree (CRT)

Same for C − Yt yields an independent CRT

Glue the CRTs together by declaring points on the vertical lines to be equivalent

Q: What is the resulting structure? A: Sphere with a space-filling path. A peanosphere.
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Surface is topologically a sphere by Moore’s theorem

Theorem (Moore 1925)
Let ∼= be any topologically closed equivalence relation on the sphere S2. Assume
that each equivalence class is connected and not equal to all of S2. Then the
quotient space S2/ ∼= is homeomorphic to S2 if and only if no equivalence class
separates the sphere into two or more connected components.

An equivalence relation is topologically closed iff for any two sequences (xn)
and (yn) with

xn ∼= yn for all n
xn → x and yn → y

we have that x ∼= y .
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Correspondence: quadrangulations and planar maps
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Discrete version of mating of trees: Mullin’s bijection

Xn

C − Yn

Walk in Z2 starting/ ending at origin: Produce map. If the black edges
are erased, one is left with a red quadrangulation Q.

Q is bipartite: blue and green vertices are the two classes. Each
quadrilateral in Q has one blue-to-blue diagonal. These diagonals form a
planar map M (and given M one can reconstruct Q).
Blue tree T is a spanning tree of M. The green-to-green diagonals of Q
form dual graph M∗, and the green tree T ∗ is the dual spanning tree.
Bijection between

Simple walks (Xn,Yn) in Z2
+ that start/end at origin.

Pairs (M,T ) with M a rooted planar map, T a spanning tree of M.
Random (Xn,Yn) yields random (M,T ). P(M) ∼ # spanning trees of M.

Random (Xn,Yn) produces random (M,T ). P(M) ∼ # spanning trees of M.Scott Sheffield (MIT) What is a random surface? July 3, 2022 24 / 69
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Remark about Laplacian determinants

Probability measure on N-edge maps with P(M) ∼ # spanning trees of M.

Kirchhoff’s Matrix Tree Theorem: number of spanning trees of M is a
form of Laplacian determinant det∆.

Classical: partition function of Gaussian free field on M is (det∆)−1/2.

Similarly: partition function for d-dimensional GFF is (det∆)−d/2.

Intuition: surfaces that have a lot of spanning trees have relatively fewer
embeddings in Rd and vice versa.

d-dim embedded surface: P(M) ∼ (# spanning trees of M)−d/2.

Map: Connected map with smallest number spanning trees is a tree—think
of maps with few spanning trees as being “more tree-like.” Larger d makes
maps “rougher” or more tree-like.

Weirdly... if (M,T ) is tree decorated random surface, the law of M is kind
of a like “law of surface embedded in Rd with d = −2.”
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Unconstrained variant

We remark that there is a variant of the Mullin bijection in which we relax the
restriction that Xn is non-negative, see below.

Xn

C − Yn

Here we can imagine that the left and right sides of the above rectangle are glued
to one another (so that both Xn and Yn then become indexed by a circle).
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2D walk (Xt ,Yt), coordinates X (t), C − Y (t).
n=2000;Z=Table[0,{j,1,n+1}];A=Z;B=Z;For[j=1,j<n,++j,A[[j+1]]=A[[j]]+If[2 RandomReal[]>1+A[[j]]/(n-j),1,-1];B[[j+1]]=B[[j]]

+If[2 RandomReal[]>1+B[[j]]/(n-j),1,-1]]; X=n/2+(A+B)/2;Y=n/2+(A-B)/2;{ListPlot[{X,n+Sqrt[n]-Y},PlotJoined->True,Axes->False],

Graphics[Table[Line[{{X[[j]],Y[[j]]},{X[[j+1]],Y[[j+1]]}}],{j,1,n}]]}
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The corresponding pair of trees
vertnumX=Z+1;vertnumY=Z+1;last=Z+1;minxloc=1;minyloc=1; For[j=1,j<n+1,++j, If[X[[j]]<X[[minxloc]],minxloc = j];
If [Y[[j]] < Y[[minyloc]], minyloc = j]]; count = 1;

For[ j = minxloc, j < n + 1, ++j,If[X[[j+1]]>X[[j]],vertnumX[[j+1]]=++count;last[[X[[j+1]]]] = count, vertnumX[[j+1]]=
last[[X[[j+1]]]]]]; vertnumX[[1]] = vertnumX[[n + 1]];

For[j = 1,j<minxloc-1,++j,If[X[[j+1]]>X[[j]],vertnumX[[j+1]] =++count;last[[X[[j + 1]]]] = count, vertnumX[[j + 1]] =
last[[X[[j + 1]]]]]]; vertnumY[[minyloc]] = ++count; last = Z + count; For[j = minyloc, j < n + 1, ++j,
If[Y[[j + 1]] > Y[[j]], vertnumY[[j + 1]] = ++count; last[[Y[[j + 1]]]] = count, vertnumY[[j + 1]] = last[[Y[[j + 1]]]]]];
vertnumY[[1]] = vertnumY[[n + 1]]; For[j = 1, j < minyloc - 1, ++j, If[Y[[j + 1]] > Y[[j]], vertnumY[[j + 1]] = ++count;
last[[Y[[j + 1]]]] = count, vertnumY[[j + 1]] = last[[Y[[j + 1]]]]]];

{GraphPlot[SimpleGraph[Table[Style[vertnumX[[j]] <-> vertnumX[[j + 1]], Blue], {j,1,n}]], VertexStyle -> Blue, GraphLayout ->
{"SpringEmbedding"}], GraphPlot[SimpleGraph[Table[Style[vertnumY[[j]] <-> vertnumY[[j + 1]], Green], {j,1,n}]],
VertexStyle -> Green, GraphLayout -> {"SpringEmbedding"}]}
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Add red edges connecting two trees to make planar map
g=Table[0->0,{j,1,3n/2}];count=1;For[j=1,j<=n,++j,g[[count++]]=Style[vertnumX[[j]]<->vertnumY[[j]],Red]];For[j=1,j<=n,++j,

If[X[[j]]<X[[j+1]],g[[count++]]= Style[vertnumX[[j]] <-> vertnumX[[j + 1]], Blue]]];For[j=1, j <= n,++j, If[Y[[j]]<Y[[j + 1]],

g[[count++]]=Style[vertnumY[[j]]<->vertnumY[[j+1]],Green]]];

GraphPlot3D[g, VertexStyle->Table[i ->If[i<vertnumY[[minyloc]],Blue,Green],{i,1,n/2+2}],GraphLayout ->{"SpringElectricalEmbedding"}]
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Remove trees, show just quadrangulation (red edges)
M=SparseArray[Table[0,{j,1,n/2+2},{k,1,n/2+2}]];For[j=1,j<n+1,j++,M[[vertnumX[[j]],vertnumY[[j]]]]+= 1];

x=GraphPlot3D[M,GraphLayout -> {"SpringElectricalEmbedding"},VertexShapeFunction->None]

Typing code below after making 3D figure makes animated spinning version.

ResourceFunction["ExportRotatingGIF"]["C:\\filename.gif", %, ImageSize -> 1200]
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Changing the correlation parameter

Correlation: Instead of taking Xt and Yt to be independent Brownian motions, we
can make them correlated. Varying the correlation coefficient ρ (between −1 and
1) gives a 1 parameter family of random surfaces.

Relation to d : It turns out (though not obvious) that changing ρ is in some sense
equivalent to changing d . As d goes from −∞ to 1, the value ρ goes from −1 to 1.

Intuition: Highly correlated Brownian trees produce rougher, more tree-like
surfaces. Highly anti-correlated produce smoother, more sphere-like surfaces.

Decorated planar maps: Sometimes decorated planar maps (e.g. by percolation,
Ising model, spanning trees) are encoded by correlated pairs of trees.

d = −7: Jeremie Bettinelli’s bipolar-orientation-decorated maps
https://www.normalesup.org/~bettinel/simul_bom.html

d = −12.5: Benedikt Stufler’s Schnyder-Wood Decorated Map
https://www.dmg.tuwien.ac.at/stufler/gatranim.html

d = .5: Jeremie Bettinelli’s FK-Ising bipolar-orientation-decorated maps
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1̃. BROWNIAN SPHERE:
A MATING OF A DIFFERENT
PAIR OF RANDOM TREES
RELATED TO BROWNIAN

SNAKE
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Cori-Vauquelin-Schaeffer bijection helps us enumerate rooted maps M (or
rooted quadrangulations Q) instead of (M,T ) pairs. Similar to the Mullin
bijection but with a few key differences.

1. Instead of requiring (Xn,Yn) to traverse lattice edges we at each step
allow Yn to change by ±1 and Xn by either 0 or ±1.

2. Instead of perfectly horizontal green chords, we draw chords that are one
unit higher on the right than on the left. We draw one such chord
leftward starting at each vertex on the graph of Xn, which means that
we have to add an extra vertex of minimal height as shown.

0
1
2
3
4

Xn

C − Yn

3. We consider only (Xn,Yn) pairs for which the above picture has a special
property: namely, whenever two red vertical lines are incident to the
same blue chord, their lower endpoints have the same height.
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Collapse blue to make tree. Condition 3 says two red edges starting at same blue
vertex have same green vertex height—label each red vertex by that height.

0
1
2
3
4

1
2

2 3
2

3
32

3
4344

3

Then shrink the red edges to points.

1

2

2 3

2

3

32

3

4

3

44

3

1

2

2 3

2

3

32

3

4

3

44

3

The construction above yields a bijection between

1. Well-labeled rooted planar trees (T , `). Here ` maps vertices of T to
positive integers; root has label 1, adjacent vertices differ by 0 or ±1.

2. Rooted quadrangulations Q.
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Markovian discrete snake: Condition on head height Yk staying
non-negative with Y0 = Y2n = 0. Let Xn be horizontal coordinate.

Brownian snake: Rescaling gives continuum Brownian snake (process by Le
Gall in 1990’s, term coined by Dynkin and Kuznetsov).

(Xt, Yt)

(0, 0)(inf{X·}, 0)
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3. DEFINING THE LQG SPHERE
USING THE GAUSSIAN FREE

FIELD

Scott Sheffield (MIT) What is a random surface? July 3, 2022 36 / 69



Conformal maps (from David Gu’s web gallery)
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Picking a surface at random in the continuum
Uniformization theorem: every simply connected Riemannian surface can be
conformally mapped to either the unit disk, the plane, or the sphere S2 in R3

ψ

Isothermal coordinates: Metric for the surface takes the form eρ(z)dz for some smooth
function ρ where dz is the Euclidean metric.
⇒ Can parameterize the space of surfaces with smooth functions.

If ρ = 0, get the same surface

If ∆ρ = 0, i.e. if ρ is harmonic, the surface described is flat

Question: Which measure on ρ? If we want our surface to be a perturbation of a flat

metric, natural to choose ρ as the canonical perturbation of a harmonic function.
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The Gaussian free field

The discrete Gaussian free field (DGFF) is a
Gaussian random surface model.

Measure on functions φ : D → R for D ⊆ Z2 and
φ|∂D = ψ with density respect to Lebesgue
measure on R|D|:

1

Z exp

(
−1

2

∑
x∼y

(φ(x)− φ(y))2

)

Natural perturbation of a harmonic function

Fine mesh limit: converges to the continuum GFF,
i.e. the standard Gaussian wrt the Dirichlet inner
product

(f , g)∇ =
1

2π

∫
∇f (x) · ∇g(x)dx .

Continuum GFF not a function — only a
generalized function
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Liouville quantum gravity: eγφ(z)dz
where φ is a kind of GFF and γ ∈ [0, 2)

Random surface model: Polyakov,
1980. Motivated by string theory.

Some ideas pre-date Polyakov, credits
Douglas for “quadratic action”.

Rigorous construction of measure:
Høegh-Krohn, 1971, γ ∈ [0,

√
2). Ka-

hane, 1985, γ ∈ [0, 2).

Figure: draw square blocks that are
“about same size” w.r.t. this measure.

Does not make literal sense as φ takes
values in the space of distributions.

Can make sense of random area mea-
sure using a regularization procedure.

Formally define surface to be pair
(D, φ) modulo coordinate change.

Areas of regions and lengths of curves
are well defined.

γ = 0.5

(Number of subdivisions)

Scott Sheffield (MIT) What is a random surface? July 3, 2022 40 / 69



Liouville quantum gravity: eγφ(z)dz
where φ is a kind of GFF and γ ∈ [0, 2)

Random surface model: Polyakov,
1980. Motivated by string theory.

Some ideas pre-date Polyakov, credits
Douglas for “quadratic action”.

Rigorous construction of measure:
Høegh-Krohn, 1971, γ ∈ [0,

√
2). Ka-

hane, 1985, γ ∈ [0, 2).

Figure: draw square blocks that are
“about same size” w.r.t. this measure.

Does not make literal sense as φ takes
values in the space of distributions.

Can make sense of random area mea-
sure using a regularization procedure.

Formally define surface to be pair
(D, φ) modulo coordinate change.

Areas of regions and lengths of curves
are well defined.

γ = 0.5

(Number of subdivisions)

Scott Sheffield (MIT) What is a random surface? July 3, 2022 40 / 69



Liouville quantum gravity: eγφ(z)dz
where φ is a kind of GFF and γ ∈ [0, 2)

Random surface model: Polyakov,
1980. Motivated by string theory.

Some ideas pre-date Polyakov, credits
Douglas for “quadratic action”.

Rigorous construction of measure:
Høegh-Krohn, 1971, γ ∈ [0,

√
2). Ka-

hane, 1985, γ ∈ [0, 2).

Figure: draw square blocks that are
“about same size” w.r.t. this measure.

Does not make literal sense as φ takes
values in the space of distributions.

Can make sense of random area mea-
sure using a regularization procedure.

Formally define surface to be pair
(D, φ) modulo coordinate change.

Areas of regions and lengths of curves
are well defined.

γ = 0.5

(Number of subdivisions)

Scott Sheffield (MIT) What is a random surface? July 3, 2022 40 / 69



Liouville quantum gravity: eγφ(z)dz
where φ is a kind of GFF and γ ∈ [0, 2)

Random surface model: Polyakov,
1980. Motivated by string theory.

Some ideas pre-date Polyakov, credits
Douglas for “quadratic action”.

Rigorous construction of measure:
Høegh-Krohn, 1971, γ ∈ [0,

√
2). Ka-

hane, 1985, γ ∈ [0, 2).

Figure: draw square blocks that are
“about same size” w.r.t. this measure.

Does not make literal sense as φ takes
values in the space of distributions.

Can make sense of random area mea-
sure using a regularization procedure.

Formally define surface to be pair
(D, φ) modulo coordinate change.

Areas of regions and lengths of curves
are well defined.

γ = 0.5

(Number of subdivisions)

Scott Sheffield (MIT) What is a random surface? July 3, 2022 40 / 69



Liouville quantum gravity: eγφ(z)dz
where φ is a kind of GFF and γ ∈ [0, 2)

Random surface model: Polyakov,
1980. Motivated by string theory.

Some ideas pre-date Polyakov, credits
Douglas for “quadratic action”.

Rigorous construction of measure:
Høegh-Krohn, 1971, γ ∈ [0,

√
2). Ka-

hane, 1985, γ ∈ [0, 2).

Figure: draw square blocks that are
“about same size” w.r.t. this measure.

Does not make literal sense as φ takes
values in the space of distributions.

Can make sense of random area mea-
sure using a regularization procedure.

Formally define surface to be pair
(D, φ) modulo coordinate change.

Areas of regions and lengths of curves
are well defined.

γ = 1.0

(Number of subdivisions)

Scott Sheffield (MIT) What is a random surface? July 3, 2022 40 / 69



Liouville quantum gravity: eγφ(z)dz
where φ is a kind of GFF and γ ∈ [0, 2)

Random surface model: Polyakov,
1980. Motivated by string theory.

Some ideas pre-date Polyakov, credits
Douglas for “quadratic action”.

Rigorous construction of measure:
Høegh-Krohn, 1971, γ ∈ [0,

√
2). Ka-

hane, 1985, γ ∈ [0, 2).

Figure: draw square blocks that are
“about same size” w.r.t. this measure.

Does not make literal sense as φ takes
values in the space of distributions.

Can make sense of random area mea-
sure using a regularization procedure.

Formally define surface to be pair
(D, φ) modulo coordinate change.

Areas of regions and lengths of curves
are well defined.

γ = 1.5

(Number of subdivisions)

Scott Sheffield (MIT) What is a random surface? July 3, 2022 40 / 69



Liouville quantum gravity: eγφ(z)dz
where φ is a kind of GFF and γ ∈ [0, 2)

Random surface model: Polyakov,
1980. Motivated by string theory.

Some ideas pre-date Polyakov, credits
Douglas for “quadratic action”.

Rigorous construction of measure:
Høegh-Krohn, 1971, γ ∈ [0,

√
2). Ka-

hane, 1985, γ ∈ [0, 2).

Figure: draw square blocks that are
“about same size” w.r.t. this measure.

Does not make literal sense as φ takes
values in the space of distributions.

Can make sense of random area mea-
sure using a regularization procedure.

Formally define surface to be pair
(D, φ) modulo coordinate change.

Areas of regions and lengths of curves
are well defined.

γ = 2.0

(Number of subdivisions)

Scott Sheffield (MIT) What is a random surface? July 3, 2022 40 / 69



Liouville quantum gravity: eγφ(z)dz
where φ is a kind of GFF and γ ∈ [0, 2)

Random surface model: Polyakov,
1980. Motivated by string theory.

Some ideas pre-date Polyakov, credits
Douglas for “quadratic action”.

Rigorous construction of measure:
Høegh-Krohn, 1971, γ ∈ [0,

√
2). Ka-

hane, 1985, γ ∈ [0, 2).

Figure: draw square blocks that are
“about same size” w.r.t. this measure.

Does not make literal sense as φ takes
values in the space of distributions.

Can make sense of random area mea-
sure using a regularization procedure.

Formally define surface to be pair
(D, φ) modulo coordinate change.

Areas of regions and lengths of curves
are well defined.

(Number of subdivisions)

Scott Sheffield (MIT) What is a random surface? July 3, 2022 40 / 69



Liouville quantum gravity: eγφ(z)dz
where φ is a kind of GFF and γ ∈ [0, 2)

Random surface model: Polyakov,
1980. Motivated by string theory.

Some ideas pre-date Polyakov, credits
Douglas for “quadratic action”.

Rigorous construction of measure:
Høegh-Krohn, 1971, γ ∈ [0,

√
2). Ka-

hane, 1985, γ ∈ [0, 2).

Figure: draw square blocks that are
“about same size” w.r.t. this measure.

Does not make literal sense as φ takes
values in the space of distributions.

Can make sense of random area mea-
sure using a regularization procedure.

Formally define surface to be pair
(D, φ) modulo coordinate change.

Areas of regions and lengths of curves
are well defined.

(Number of subdivisions)

Scott Sheffield (MIT) What is a random surface? July 3, 2022 40 / 69



Liouville quantum gravity: eγφ(z)dz
where φ is a kind of GFF and γ ∈ [0, 2)

Random surface model: Polyakov,
1980. Motivated by string theory.

Some ideas pre-date Polyakov, credits
Douglas for “quadratic action”.

Rigorous construction of measure:
Høegh-Krohn, 1971, γ ∈ [0,

√
2). Ka-

hane, 1985, γ ∈ [0, 2).

Figure: draw square blocks that are
“about same size” w.r.t. this measure.

Does not make literal sense as φ takes
values in the space of distributions.

Can make sense of random area mea-
sure using a regularization procedure.

Formally define surface to be pair
(D, φ) modulo coordinate change.

Areas of regions and lengths of curves
are well defined.

(Number of subdivisions)

Scott Sheffield (MIT) What is a random surface? July 3, 2022 40 / 69



Liouville quantum gravity: eγφ(z)dz
where φ is a kind of GFF and γ ∈ [0, 2)

Random surface model: Polyakov,
1980. Motivated by string theory.

Some ideas pre-date Polyakov, credits
Douglas for “quadratic action”.

Rigorous construction of measure:
Høegh-Krohn, 1971, γ ∈ [0,

√
2). Ka-

hane, 1985, γ ∈ [0, 2).

Figure: draw square blocks that are
“about same size” w.r.t. this measure.

Does not make literal sense as φ takes
values in the space of distributions.

Can make sense of random area mea-
sure using a regularization procedure.

Formally define surface to be pair
(D, φ) modulo coordinate change.

Areas of regions and lengths of curves
are well defined.

(Number of subdivisions)

Scott Sheffield (MIT) What is a random surface? July 3, 2022 40 / 69



GFF and square subdivision for LQG measure
K = 8; fieldmultiplier = 1.5; squarefraction = .001;

phi=Re[Fourier[Table[(InverseErf[2 Random[]-1]+I InverseErf[2 Random[]-1])*If[j+k == 2,0,

1/Sqrt[(Sin[(j-1)*Pi/2^K]^2+Sin[(k-1)*Pi/2^K]^2)]],{j,2^K},{k,2^K}]]];

MGFF=Exp[fieldmultiplier phi];CO = squarefraction Sum[MGFF[[i,j]], {i,1,2^K}, {j,1,2^K}];

{ListPlot3D[phi],Graphics[Table[Table[If[Sum[MGFF[[2^k m+i,2^k n+j]],{i,1,2^k},{j,1,2^k}]<CO,

{Hue[k/8],EdgeForm[Thin],Rectangle[{2^k m, 2^k n},{2^k m+2^k,2^k n+2^k}]}],

{m,0,2^(K-k)-1},{n,0,2^(K-k)-1}], {k,0,K-1}]]}
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Recall Mullin bijection

Xn

C − Yn

When we delete the trees, we have a quadrangulation in which the edges come
with a natural ordering. Also works for variant where tree root and dual-tree root
are non-adjacent. Let’s try a Smith embedding (with root and dual root for top
and bottom) and color the squares according to that ordering.
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Smith embedding
M=M+Transpose[M];deg=Table[Sum[M[[i,j]],{i,1,n/2+2}],{j,1,n/2+2}];L=Table[If[i==j,-deg[[i]],M[[i,j]]],{i,1,n/2+2},{j,1,n/ 2+2}];

a=vertnumX[[minxloc]];b=vertnumY[[minyloc]]; For[j=1,j<=n/2+2,++j,L[[ a, j]]=0;L[[b, j]]=0];L[[a, a]] = 1; L[[b, b]] = 1;

v = Table[0, {j, 1, n/2 + 2}]; v[[a]]=1;w=LinearSolve[N[L], N[v]]; horiz =Table[0,{j,1,n+1}];

vertgap=Table[w[[vertnumY[[j]]]]-w[[vertnumX[[j]]]], {j,1,n+1}];horiz[[1]] = 0; For[j = 1, j <= n, ++j, horiz[[j+1]]=horiz[[j]]+

vertgap[[j]]]; horizgap=Abs[horiz[[n+1]]];g=Table[0, {j, 1, n}];count=1;sq[bot_, top_, left_, hue_]={Hue[hue], EdgeForm[Thin],

Rectangle[{left, bot}, {left + (top - bot), top}]};ssq[bot_,top_,left_,hue_]={Hue[-Log[Abs[top-bot]+.0000001]/6], EdgeForm[Thin],

Rectangle[{left, bot}, {left + (top - bot), top}]};g1=Table[sq[w[[vertnumX[[j]]]], w[[vertnumY[[j]]]], horiz[[j]], j/n],{j,1,n}];

g2=Table[ssq[w[[vertnumX[[j]]]], w[[vertnumY[[j]]]], horiz[[j]], j/n],{j,1,n}];

{Graphics[{g1,Translate[g1,{horizgap, 0}],Translate[g1,{2 horizgap, 0}]}, PlotRange->{{0, horizgap},{0,1}}],

Graphics[{g2,Translate[g2,{horizgap, 0}],Translate[g2,{2 horizgap, 0}]}, PlotRange->{{0, horizgap},{0,1}}]}
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Cylinder picture of Smith embedding

cutoff=.0001;rvsq[bot_, top_, left_, hue_]:= RevolutionPlot3D[{1, \[Theta]}, {\[Theta], (2 Pi/horizgap)bot,(2 Pi/horizgap)top

+.0000001},{p,(2 Pi/horizgap)left,(2 Pi/horizgap)(left+(top-bot)+.0000001)},Mesh->None,PlotStyle ->Hue[hue],BoundaryStyle ->

{None,Black}]; count=0; r=Table[0,{j,1,n}]; For[j=1, j<= n,++j,If[Abs[w[[vertnumX[[j]]]] - w[[vertnumY[[j]]]]] > .0001,

r[[++count]]=rvsq[w[[vertnumX[[j]]]],w[[vertnumY[[j]]]], horiz[[j]], j/n]]]; Show[Table[r[[j]], {j, 1, count}],

PlotRange ->All, Boxed ->False, Axes->False]
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Projection onto the sphere
cutoff=.0001;spsq[bot_,top_,left_,hue_]:=SphericalPlot3D[1,{p,2ArcTan[Exp[(2 Pi/horizgap) (bot-1/2)]],2ArcTan[Exp[(2 Pi/horizgap)

(top-1/2)]+ .0000001]},{\[Theta], (2 Pi/horizgap) left, (2 Pi/ horizgap) (left + (top - bot))+.0000001},Mesh->None,PlotStyle ->

Hue[hue], BoundaryStyle -> {None, Black}];count = 0; For[j = 1, j<= n,++j, If[Abs[w[[vertnumX[[j]]]] - w[[vertnumY[[j]]]]] >

.0001, r[[++count]]=spsq[w[[vertnumX[[j]]]], w[[vertnumY[[j]]]], horiz[[j]], j/n]]];Show[Table[r[[j]], {j,1,count}], PlotRange ->

All, Boxed ->False,Axes ->False]
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Metric growth on
√

8/3-LQG surface. Picture by Jason Miller.
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2↔3. SLE-DECORATED LQG
SPHERE IS EQUIVALENT TO

PEANOSPHERE
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Random non-self-crossing path

Given a simply connected planar domain D with boundary points a and b and a
parameter κ ∈ [0,∞), the Schramm-Loewner evolution SLEκ is a random
non-self-crossing path in D from a to b.

b

a

η

D

The parameter κ roughly indicates how “windy” the path is. Would like to argue
that SLE is in some sense the “canonical” random non-self-crossing path. What
symmetries characterize SLE?
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Conformal Markov property of SLE

b

a

η

D

φ

D̃ φ ◦ η

φ(a)

φ(b)

If φ conformally maps D to D̃ and η is an SLEκ from a to b in D, then φ ◦ η is an
SLEκ from φ(a) to φ(b) in D̃.
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Markov Property

b

a

η

D

b

D

Given η up to a
stopping time t...

law of remainder is SLE in
D \ η[0, t] from η(t) to b.

η(t)
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Chordal Schramm-Loewner evolution (SLE)

THEOREM [Oded Schramm]: Conformal invariance and the Markov
property completely determine the law of SLE, up to a single parameter
which we denote by κ ≥ 0.

Explicit construction: An SLE path γ from 0 to ∞ in the complex upper
half plane H can be defined in an interesting way: given path γ one can
construct conformal maps gt : H \ γ([0, t])→ H (normalized to look like
identity near infinity, i.e., limz→∞ gt(z)− z = 0). In SLEκ, one defines gt via
an ODE (which makes sense for each fixed z):

∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z ,

where Wt =
√
κBt =LAW Bκt and Bt is ordinary Brownian motion.
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SLE phases [Rohde, Schramm]

κ ≤ 4 κ ∈ (4, 8) κ ≥ 8
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Bond percolation: toss coin for each edge
n=40;Graphics[{Table[If[RandomInteger[1]==1,Line[{{i,j},{i,j+1}}]],{i,0,n},{j,0,n-1}],

Table[If[RandomInteger[1]==1,Line[{{i,j},{i+1,j}}]],{i,0,n-1},{j,0,n}]}]

Scott Sheffield (MIT) What is a random surface? July 3, 2022 53 / 69



Site percolation: toss coin to color each face
n=40; Graphics[Table[{If[(i-n)(j-n)==0,Blue, If[i j==0,Yellow,If[RandomInteger[1]==1,Yellow,Blue]]],

RegularPolygon[i{-Sqrt[3],-1}+j{-Sqrt[3],1},{1,0},6]},{i,0,n},{j,0,n}]]

Left boundary: blue. Right boundary: yellow. Blue-yellow interface: loops
plus one long path. Path converges in law to SLE6. Stanislav Smirnov (ICM 2010
Fields Medal). Camia and Newman. Ising model: another random coloring with
conformal invariant limit. SLE3 and SLE16/3. Smirnov plus Chelkak,
Duminil-Copin, Hongler, Izyurov, Kemppainen.
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Percolation interface
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Uniform spanning tree (white), dual (red), interface (black)

Black interface converges to SLE8 loop. Lawler, Schramm, Werner.
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Continuum space-filling SLE path

Picture by Jason Miller.
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Similar construction with circle packings, also related to conformal maps.

Picture by Jason Miller, packed with Ken Stephenson’s CirclePack.
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4. DEFINING THE MULTIPOINT
FUNCTIONS OF CONFORMAL

FIELD THEORY
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Polyakov measure

STUDENT: How many ways to conformally embed a surface into the sphere?

INSTRUCTOR: If a, b, c are three distinct points on sphere, and e, f , g are
three others (say north/south poles, fixed point on equator) there is a unique
map taking a, b, c to e, f , g . The Möbius group PSL(2,C) of all conformal
automorphisms is 6-real-dimensional, has infinite-volume Haar measure.

STUDENT: Can you somehow average over all possible embeddings?

INSTRUCTOR: If F is any function of the embedded surface, write
〈
F
〉

for
expectation w.r.t. to Haar-measure-embedded LQG sphere. Equivalently: F
is function of φ where φ is zero-mean GFF on sphere, plus constant chosen
from infinite measure e−2Qxdx .

STUDENT: How do you define expectation of F w.r.t. an infinite measure?

INSTRUCTOR: Just integrate F w.r.t. the infinite measure.

STUDENT: Got it. Can you show me what all these embeddings look like?
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Liouville conformal field theory
STUDENT: So suppose F is “the amount of surface area parameterized by
A” where A is a fixed ball (the Arctic Circle say). What would 〈F 〉 be?

INSTRUCTOR: Infinity. You have an infinite measure on the space of
embeddings: the measure of the embeddings that assign most of the mass to
the Arctic circle is infinite.
STUDENT: How about a product? Say, area parameterized by Finland times
area parameterized by Bolivia times area parameterized by Mongolia?...
INSTRUCTOR: Now you’re talking. Yes, there are “relatively many”
embeddings that assign a macroscopic mass to one or two of those countries,
but “relatively few” assigning macroscopic mass to all three. So the expected
“product of areas” will be finite in this case. More generally take three or

more disjoint Ai . Consider the product of their areas:
〈∏

i

∫
Ai

eαiφi (xi )dxi
〉

where αi = γ. You can pull the integral outside the expectation and write this

as

∫
∏

Ai

〈∏
eαiφ(xi )

〉∏
dxi . Integral of “multipoint function”

〈∏
eαiφ(xi )

〉
.

STUDENT: What if I want a product of areas of balls, lengths of curves,
fractal measures of fractal sets?...
INSTRUCTOR: Use similar multipoint functions but let αi be different.
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STUDENT: How about a product? Say, area parameterized by Finland times
area parameterized by Bolivia times area parameterized by Mongolia?...
INSTRUCTOR: Now you’re talking. Yes, there are “relatively many”
embeddings that assign a macroscopic mass to one or two of those countries,
but “relatively few” assigning macroscopic mass to all three. So the expected
“product of areas” will be finite in this case. More generally take three or

more disjoint Ai . Consider the product of their areas:
〈∏

i

∫
Ai

eαiφi (xi )dxi
〉

where αi = γ. You can pull the integral outside the expectation and write this

as

∫
∏

Ai

〈∏
eαiφ(xi )

〉∏
dxi . Integral of “multipoint function”

〈∏
eαiφ(xi )

〉
.

STUDENT: What if I want a product of areas of balls, lengths of curves,
fractal measures of fractal sets?...
INSTRUCTOR: Use similar multipoint functions but let αi be different.
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Liouville conformal field theory

STUDENT: Are these multipoint functions easy to compute?

INSTRUCTOR: Ha! If φ were just a GFF then making formal sense of〈∏
eαiφ(xi )

〉
would be easy. But once we fix the surface area to be one (or

weight by its exponential) we get a difficult non-Gaussian integral. This
problem inspired a whole subject called conformal field theory and its
solution uses lots of amazing work (Belavin, Polyakov, Zamolodchikov
brothers, David, Dorn, Teischner, Kupiainen, Guillarmou, Rhodes, Vargas,
etc.) Huge subject with myriad ties to physics—quantum field theory, string
theory, 2D statistical physics, etc. See Vargas in Quanta video
https://youtu.be/9uASADiYe_8?t=440.
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Connections and keywords

Decorated

LQG surfaceBrownian surface/

Peanosphere / mated CRT

CFT

random
planar map

Quantum zipper

Schramm Loewner evolution

Imaginary geometry

Quantum Loewner evolution

Scale free invariance principle

Conformal loop ensemble

Scale free invariance principle

LQG metric space

Tutte embedding of Voronoi tesselation

Liouville first passage percolation
Tightness/uniqueness

Mullin bijection
BHS bijection Burger bijection

Bipolar bijection
etc.

Cardy-

embedding

Tutte embedding of mated CRT map

Conformal blocks
Conformal bootstrap

etc.

CVS bijection

correlations

Schnyder bij.

BDG bijection
and other bijections DOZZ

Gwynne/Holder/Sun
joint convergence

Smirnov

Gwynne/Miller

Thanks to co-authors and students: Tom Alberts, Morris Ang, Nathanaël
Berestycki, Manan Bhatia, Bertrand Duplantier, Ewain Gwynne, Nina Holden,
Richard Kenyon, Sungwook Kim, Greg Lawler, Asad Lodhia, Oren Louidor, Jason
Miller, Andrei Okounkov, Minjae Park, Yuval Peres, Joshua Pfeffer, Rémi Rhodes,
Oded Schramm, Nike Sun, Xin Sun, Vincent Vargas, Sam Watson, Menglu Wang,
Wendelin Werner, David Wilson, Catherine Wolfram, Hao Wu and Pu Yu.
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Some 2D models remain mysterious: Diffusion Limited Aggregation (DLA). Witten-Sander 1981.
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DLA in nature: “A DLA cluster grown from a copper sulfate solution in an electrodeposition

cell” (from Wikipedia)
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DLA on a
√

2-LQG (picture by Jason Miller) is suprisingly more tractable.
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ψ

THANKS to those who helped improve the ICM notes: Tom Alberts, Morris
Ang, Nathanael Berestycki, Olivier Bernardi, Sky Cao, Nicolas Curien, Bertrand
Duplantier, Ewain Gwynne, Jean-François Le Gall, Grégory Miermont, Jason
Miller, Ron Nissim, Minjae Park, Guillaume Remy, Rémi Rhodes, Steffen Rohde,
Stanislav Smirnov, Yilin Wang and Wendelin Werner.

THANKS to the organizers.

THANKS to many anonymous referees.

And thank you for listening!
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BONUS SLIDE: Exponential crochet by Tonya Khovanova. Amount of yarn needed grows like

exponential of diameter d . For random planar map (approximatiing Brownian surface) yarn

needed grows like d4. Either way growth exceeds d3 so there will be lots of compressing or

stretching when d is large. This explains why it is hard to construct “nice” 3D embeddings of

random triangulations when the number of triangles is too large.
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BONUS SLIDE: Finite-area surfaces embedded in dimension 3 want to be “tree like.”’ But if

you start with a rhombic piece of triangular lattice, fix the boundary values, and let the rest of

the surface evolve by Glauber dynamics, you start to get a minimal spanning surface decorated

by “folded up trees” that dance around and merge. Related to Wilson loop expectations for

Yang-Mills? Surfaces traced by Chatterjee’s string trajectories? See forthcoming work with Park,

Pfeffer, Yu about Wilson loop expectations in 2D and flat surface sums/integrals.
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