What is a random surface?

Scott Sheffield

Massachusetts Institute of Technology
July 3, 2022

What is a random surface?

This talk is expected to be streamed as a plenary ICM talk.

What is a random surface?

This talk is expected to be streamed as a plenary ICM talk.
The presentation is designed for an online audience.

Why is everyone talking about this 2014 comedy show clip?

Why is everyone talking about this 2014 comedy show clip?

This is when Stephen Colbert (comedian-in character) told Edward Frenkel (mathematician) that he HATED MATH!

Why is everyone talking about this 2014 comedy show clip?

This is when Stephen Colbert (comedian-in character) told Edward Frenkel (mathematician) that he HATED MATH!
You won't believe what happened next!

Frenkel: When people say "I hate math" what you're really saying is, "I hate the way mathematics was taught to me." Imagine an art class in which they only teach you how to paint a fence or wall but never show you the paintings of the great masters. Then of course years later you're going to say, "I hate art....."

Colbert: But in math don't I have to know a fair amount of high end math to appreciate the work of the masters? It's almost as if you could show me a painting by a master but I don't have eyeballs yet. Don't you need to grow the math eyeballs to see the equations as beautiful?

Random surfaces

Today: Grow math eyeballs we need to see/understand random surfaces.

Random surfaces

Today: Grow math eyeballs we need to see/understand random surfaces.
Big subject: combinatorics, graph theory, geometry, analysis, quantum field theory, statistical physics, representation theory, probability, string theory, etc.

Random surfaces

Today: Grow math eyeballs we need to see/understand random surfaces.
Big subject: combinatorics, graph theory, geometry, analysis, quantum field theory, statistical physics, representation theory, probability, string theory, etc.
Using literal eyeballs: Right pictures to draw? Simulations to view?

Random surfaces

Today: Grow math eyeballs we need to see/understand random surfaces. Big subject: combinatorics, graph theory, geometry, analysis, quantum field theory, statistical physics, representation theory, probability, string theory, etc.
Using literal eyeballs: Right pictures to draw? Simulations to view?
Metaphorical eyeballs: How have different pictures of the same object motivated different mathematical formulations? How are they all related?

Random surfaces

Today: Grow math eyeballs we need to see/understand random surfaces. Big subject: combinatorics, graph theory, geometry, analysis, quantum field theory, statistical physics, representation theory, probability, string theory, etc.
Using literal eyeballs: Right pictures to draw? Simulations to view?
Metaphorical eyeballs: How have different pictures of the same object motivated different mathematical formulations? How are they all related?
Also: Random paths? Random trees? Random non-self-crossing paths?

Random surfaces

Today: Grow math eyeballs we need to see/understand random surfaces. Big subject: combinatorics, graph theory, geometry, analysis, quantum field theory, statistical physics, representation theory, probability, string theory, etc.
Using literal eyeballs: Right pictures to draw? Simulations to view?
Metaphorical eyeballs: How have different pictures of the same object motivated different mathematical formulations? How are they all related?
Also: Random paths? Random trees? Random non-self-crossing paths?
Google What is a random surface? to find my ICM Lecture Notes.

Random surfaces

Today: Grow math eyeballs we need to see/understand random surfaces. Big subject: combinatorics, graph theory, geometry, analysis, quantum field theory, statistical physics, representation theory, probability, string theory, etc.
Using literal eyeballs: Right pictures to draw? Simulations to view?
Metaphorical eyeballs: How have different pictures of the same object motivated different mathematical formulations? How are they all related?
Also: Random paths? Random trees? Random non-self-crossing paths?
Google What is a random surface? to find my ICM Lecture Notes.
261 references including 15 or 20 survey articles by prominent researchers.

Random surfaces

Today: Grow math eyeballs we need to see/understand random surfaces. Big subject: combinatorics, graph theory, geometry, analysis, quantum field theory, statistical physics, representation theory, probability, string theory, etc.
Using literal eyeballs: Right pictures to draw? Simulations to view?
Metaphorical eyeballs: How have different pictures of the same object motivated different mathematical formulations? How are they all related?
Also: Random paths? Random trees? Random non-self-crossing paths?
Google What is a random surface? to find my ICM Lecture Notes.
261 references including 15 or 20 survey articles by prominent researchers.
Long list only scratches the surface (sorry for pun!) of a very large field.

Random surfaces

Today: Grow math eyeballs we need to see/understand random surfaces. Big subject: combinatorics, graph theory, geometry, analysis, quantum field theory, statistical physics, representation theory, probability, string theory, etc.
Using literal eyeballs: Right pictures to draw? Simulations to view?
Metaphorical eyeballs: How have different pictures of the same object motivated different mathematical formulations? How are they all related?
Also: Random paths? Random trees? Random non-self-crossing paths?
Google What is a random surface? to find my ICM Lecture Notes.
261 references including 15 or 20 survey articles by prominent researchers.
Long list only scratches the surface (sorry for pun!) of a very large field.
Google Scott Sheffield for homepage with these slides plus code for figures.

When student asks: what's the "canonical" random path?

INSTRUCTOR: Consider the simple random walk on \mathbb{Z}. At each time step a coin toss decides whether position goes up or down. If you shrink the graph horizontally by a factor of C and vertically by a factor of \sqrt{C}, then the $C \rightarrow \infty$ limit is a random path called Brownian motion (a random function from \mathbb{R}_{+}to \mathbb{R}).

When student asks: what's the "canonical" random path?

INSTRUCTOR: Consider the simple random walk on \mathbb{Z}. At each time step a coin toss decides whether position goes up or down. If you shrink the graph horizontally by a factor of C and vertically by a factor of \sqrt{C}, then the $C \rightarrow \infty$ limit is a random path called Brownian motion (a random function from \mathbb{R}_{+}to \mathbb{R}).

STUDENT: Great! But can you define Brownian motion directly in the continuum?

When student asks: what's the "canonical" random path?

INSTRUCTOR: Consider the simple random walk on \mathbb{Z}. At each time step a coin toss decides whether position goes up or down. If you shrink the graph horizontally by a factor of C and vertically by a factor of \sqrt{C}, then the $C \rightarrow \infty$ limit is a random path called Brownian motion (a random function from \mathbb{R}_{+}to \mathbb{R}).

STUDENT: Great! But can you define Brownian motion directly in the continuum?
INSTRUCTOR: Sure! Fix $0=t_{0}<t_{1}<\ldots<t_{n}$. Specify the joint law of $B\left(t_{1}\right), \ldots, B\left(t_{n}\right)$ by making increments $B\left(t_{k}\right)-B\left(t_{k-1}\right)$ independent normal random variables with mean 0 , variance $t_{k}-t_{k-1}$. Extend to countable dense set (Kolmogorov extension), then all t (Kolomogorov-Čentsov).

When student asks: what's the "canonical" random path?
STUDENT: Are there other natural ways to characterize Brownian motion?

When student asks: what's the "canonical" random path?

STUDENT: Are there other natural ways to characterize Brownian motion?
INSTRUCTOR: Brownian motion is canonical in that it is the only random path with certain symmetries (like stationarity/independence of increments). It is universal in that (per central limit theorem) it is a limit of many discrete walks. It comes up everywhere. Finance, physics, biology, political science, PDE theory, etc.

When student asks: what's the "canonical" random path?

STUDENT: Are there other natural ways to characterize Brownian motion?
INSTRUCTOR: Brownian motion is canonical in that it is the only random path with certain symmetries (like stationarity/independence of increments). It is universal in that (per central limit theorem) it is a limit of many discrete walks. It comes up everywhere. Finance, physics, biology, political science, PDE theory, etc.

STUDENT: What if I want a random path embedded in \mathbb{R}^{d} ?

When student asks: what's the "canonical" random path?

STUDENT: Are there other natural ways to characterize Brownian motion?
INSTRUCTOR: Brownian motion is canonical in that it is the only random path with certain symmetries (like stationarity/independence of increments). It is universal in that (per central limit theorem) it is a limit of many discrete walks. It comes up everywhere. Finance, physics, biology, political science, PDE theory, etc.
STUDENT: What if I want a random path embedded in \mathbb{R}^{d} ? INSTRUCTOR: Use a vector $\left(B_{1}(t), B_{2}(t), \ldots, B_{d}(t)\right)$ of independent Brownian motions. For example, here's a Brownian loop (Brownian motion conditioned to return to origin) in the case $d=2$.

The $d=2$ case is especially interesting. Lawler, Schramm, and Werner (ICM 2006 Fields Medal) proved Mandelbrot's conjecture that the outer boundary of this loop is a random curve (a form of "SLE") with fractal dimension 4/3.

When student asks: what's the "canonical" random path?

STUDENT: Are there other natural ways to characterize Brownian motion?
INSTRUCTOR: Brownian motion is canonical in that it is the only random path with certain symmetries (like stationarity/independence of increments). It is universal in that (per central limit theorem) it is a limit of many discrete walks. It comes up everywhere. Finance, physics, biology, political science, PDE theory, etc.
STUDENT: What if I want a random path embedded in \mathbb{R}^{d} ? INSTRUCTOR: Use a vector $\left(B_{1}(t), B_{2}(t), \ldots, B_{d}(t)\right)$ of independent Brownian motions. For example, here's a Brownian loop (Brownian motion conditioned to return to origin) in the case $d=2$.

The $d=2$ case is especially interesting. Lawler, Schramm, and Werner (ICM 2006 Fields Medal) proved Mandelbrot's conjecture that the outer boundary of this loop is a random curve (a form of "SLE") with fractal dimension 4/3.

The student is happy. Now imagine a similar dialog for random surfaces.

Student asks: what's the "canonical" random surface?

INSTRUCTOR: Take a uniformly random triangulation of sphere with n triangles: i.e., among all ways to glue n triangles along boundaries to make a topological sphere, choose one at random. Here's a 30,000-triangle example by Budzinski given a 3D "spring embedding." The $n \rightarrow \infty$ limit is a random fractal surface called the Brownian sphere. Also a peanosphere, a pure Liouville quantum gravity sphere and a conformal field theory.

Student asks: what's the "canonical" random surface?

INSTRUCTOR: Take a uniformly random triangulation of sphere with n triangles: i.e., among all ways to glue n triangles along boundaries to make a topological sphere, choose one at random. Here's a 30,000-triangle example by Budzinski given a 3D "spring embedding." The $n \rightarrow \infty$ limit is a random fractal surface called the Brownian sphere. Also a peanosphere, a pure Liouville quantum gravity sphere and a conformal field theory.

STUDENT: You just listed 4 things! Which one is the $n \rightarrow \infty$ limit of this picture?

Student asks: what's the "canonical" random surface?

INSTRUCTOR: Take a uniformly random triangulation of sphere with n triangles: i.e., among all ways to glue n triangles along boundaries to make a topological sphere, choose one at random. Here's a 30,000-triangle example by Budzinski given a 3D "spring embedding." The $n \rightarrow \infty$ limit is a random fractal surface called the Brownian sphere. Also a peanosphere, a pure Liouville quantum gravity sphere and a conformal field theory.

STUDENT: You just listed 4 things! Which one is the $n \rightarrow \infty$ limit of this picture? INSTRUCTOR: They all are! The difference comes down to the features of the limit we keep track of. View them as different aspects of the same universal object. Four blind mathematicians feel the surface of an elephant and describe four things:

1. Brownian sphere: a random metric measure space constructed from the so-called Brownian snake.

2. Brownian sphere: a random metric measure space constructed from the so-called Brownian snake.
3. Peanosphere: a mating of continuum random trees that encodes both a surface and an extra tree and/or collection of loops drawn on top of it.

4. Brownian sphere: a random metric measure space constructed from the so-called Brownian snake.
5. Peanosphere: a mating of continuum random trees that encodes both a surface and an extra tree and/or collection of loops drawn on top of it.
6. Liouville quantum gravity sphere: a random fractal Riemannian surface. Areas, lengths and other measures are given by exponentials of a Gaussian free field ϕ.

7. Brownian sphere: a random metric measure space constructed from the so-called Brownian snake.
8. Peanosphere: a mating of continuum random trees that encodes both a surface and an extra tree and/or collection of loops drawn on top of it.
9. Liouville quantum gravity sphere: a random fractal Riemannian surface. Areas, lengths and other measures are given by exponentials of a Gaussian free field ϕ.
10. Conformal field theory: a collection of multipoint functions representing (regularized) integrals of products of the form $\prod e^{\alpha_{i} \phi\left(x_{i}\right)}$ w.r.t. a certain infinite measure. The infinite measure is the Polyakov measure which is the product of an unrestricted-area measure on LQG spheres (with defining field ϕ) and Haar measure on the Möbius group $\operatorname{PSL}(2, \mathbb{C})$ (to select an embedding in \mathbb{C}).

Technical point

Unit area Brownian/Peano/LQG-sphere: a sample from a probability measure $d S$ on a space of unit area sphere-homeomorphic surfaces.

Technical point

Unit area Brownian/Peano/LQG-sphere: a sample from a probability measure $d S$ on a space of unit area sphere-homeomorphic surfaces.
Unrestricted-area Brownian/Peano/LQG-sphere: sometimes it is natural to rescale by a random amount, so the area A is also random.

Technical point

Unit area Brownian/Peano/LQG-sphere: a sample from a probability measure $d S$ on a space of unit area sphere-homeomorphic surfaces.
Unrestricted-area Brownian/Peano/LQG-sphere: sometimes it is natural to rescale by a random amount, so the area A is also random.
With $k \geq 0$ marked points on surface natural measure is $A^{-7 / 2+k} d A$.

Technical point

Unit area Brownian/Peano/LQG-sphere: a sample from a probability measure $d S$ on a space of unit area sphere-homeomorphic surfaces.
Unrestricted-area Brownian/Peano/LQG-sphere: sometimes it is natural to rescale by a random amount, so the area A is also random.
With $k \geq 0$ marked points on surface natural measure is $A^{-7 / 2+k} d A$.
Exponent motivated by discrete models: number of triangulations with n faces and k marked points scales like $C \beta^{n} n^{-7 / 2+k}$ for model-dependent constants C and β. Natural to weight the counting measure by β^{-n} so we are left with power-law decay. Unrestricted-area discrete measure (appropriately rescaled) converges to the measure above as area-per-triangle ϵ goes to zero.

Technical point

Unit area Brownian/Peano/LQG-sphere: a sample from a probability measure $d S$ on a space of unit area sphere-homeomorphic surfaces.
Unrestricted-area Brownian/Peano/LQG-sphere: sometimes it is natural to rescale by a random amount, so the area A is also random.
With $k \geq 0$ marked points on surface natural measure is $A^{-7 / 2+k} d A$.
Exponent motivated by discrete models: number of triangulations with n faces and k marked points scales like $C \beta^{n} n^{-7 / 2+k}$ for model-dependent constants C and β. Natural to weight the counting measure by β^{-n} so we are left with power-law decay. Unrestricted-area discrete measure (appropriately rescaled) converges to the measure above as area-per-triangle ϵ goes to zero.
Off-critical case: If we replace β by the "off-critical" $\beta(1+\epsilon \mu)$ then the limit is $A^{-7 / 2+k} e^{-\mu A} d A$, which is finite if $\mu>0$ and $k \geq 3$. The $e^{-\mu A}$ factor is common in physics formulations, e.g. Polyakov's early work where μ is called the cosmological constant and motivated by Liouville's equation.

Student asks: what's the "canonical" random surface?

STUDENT: Do I have to learn all four viewpoints?

Student asks: what's the "canonical" random surface?

STUDENT: Do I have to learn all four viewpoints?
INSTRUCTOR: A lot of good work has been done by people fluent in only one. But all four have important applications-e.g. to metric properties (Brownian sphere), statistical physics (peanosphere), conformal probability (LQG sphere), and quantum field theory (CFT).

Student asks: what's the "canonical" random surface?

STUDENT: Do I have to learn all four viewpoints?
INSTRUCTOR: A lot of good work has been done by people fluent in only one. But all four have important applications-e.g. to metric properties (Brownian sphere), statistical physics (peanosphere), conformal probability (LQG sphere), and quantum field theory (CFT).
STUDENT: Are they characterized by simple axioms like Brownian motion is?

Student asks: what's the "canonical" random surface?

STUDENT: Do I have to learn all four viewpoints?
INSTRUCTOR: A lot of good work has been done by people fluent in only one. But all four have important applications-e.g. to metric properties (Brownian sphere), statistical physics (peanosphere), conformal probability (LQG sphere), and quantum field theory (CFT).
STUDENT: Are they characterized by simple axioms like Brownian motion is?
INSTRUCTOR: Yes. But each viewpoint comes with its own axioms, its own history and motivation, its own surveys. The proofs that they agree are long and involved.

Student asks: what's the "canonical" random surface?

STUDENT: Do I have to learn all four viewpoints?
INSTRUCTOR: A lot of good work has been done by people fluent in only one. But all four have important applications-e.g. to metric properties (Brownian sphere), statistical physics (peanosphere), conformal probability (LQG sphere), and quantum field theory (CFT).
STUDENT: Are they characterized by simple axioms like Brownian motion is?
INSTRUCTOR: Yes. But each viewpoint comes with its own axioms, its own history and motivation, its own surveys. The proofs that they agree are long and involved.
STUDENT: Can any of the viewpoints describe a random surface embedded in \mathbb{R}^{d} ?

Student asks: what's the "canonical" random surface?

STUDENT: Do I have to learn all four viewpoints?
INSTRUCTOR: A lot of good work has been done by people fluent in only one. But all four have important applications-e.g. to metric properties (Brownian sphere), statistical physics (peanosphere), conformal probability (LQG sphere), and quantum field theory (CFT).
STUDENT: Are they characterized by simple axioms like Brownian motion is?
INSTRUCTOR: Yes. But each viewpoint comes with its own axioms, its own history and motivation, its own surveys. The proofs that they agree are long and involved.
STUDENT: Can any of the viewpoints describe a random surface embedded in \mathbb{R}^{d} ?
INSTRUCTOR: Sure. Your start by weighting the law of the surface by the "number of ways" to embed it in \mathbb{R}^{d}. Formally this involves weighting by the d th power of a certain "partition function" which makes sense for $d \in \mathbb{R}$.
The surfaces are "rougher" for large d, "smoother" for small d, converging to the Euclidean sphere as $d \rightarrow-\infty$. Defined as random metric spaces for any $d \leq 25$, but only finite-diameter/finite-volume if $d \leq 1$.

Student asks: what's the "canonical" random surface?

STUDENT: Do I have to learn all four viewpoints?
INSTRUCTOR: A lot of good work has been done by people fluent in only one. But all four have important applications-e.g. to metric properties (Brownian sphere), statistical physics (peanosphere), conformal probability (LQG sphere), and quantum field theory (CFT).

STUDENT: Are they characterized by simple axioms like Brownian motion is?
INSTRUCTOR: Yes. But each viewpoint comes with its own axioms, its own history and motivation, its own surveys. The proofs that they agree are long and involved.
STUDENT: Can any of the viewpoints describe a random surface embedded in \mathbb{R}^{d} ?
INSTRUCTOR: Sure. Your start by weighting the law of the surface by the "number of ways" to embed it in \mathbb{R}^{d}. Formally this involves weighting by the d th power of a certain "partition function" which makes sense for $d \in \mathbb{R}$.
The surfaces are "rougher" for large d, "smoother" for small d, converging to the Euclidean sphere as $d \rightarrow-\infty$. Defined as random metric spaces for any $d \leq 25$, but only finite-diameter/finite-volume if $d \leq 1$.

STUDENT: I'm getting lost. Can you give the four definitions you promised?

1. BROWNIAN SPHERE:
 A RANDOM-METRIC-SPACE LIMIT OF RANDOM PLANAR MAPS

Planar maps and Tutte's enumeration

Planar map: finite graph embedded in plane, where two embeddings are equivalent if an orientation-preserving homeomorphism of $\mathbb{C} \cup\{\infty\}$ takes one to other. Figures below isomorphic as graphs but represent different planar maps.

Planar maps and Tutte's enumeration

Planar map: finite graph embedded in plane, where two embeddings are equivalent if an orientation-preserving homeomorphism of $\mathbb{C} \cup\{\infty\}$ takes one to other. Figures below isomorphic as graphs but represent different planar maps.

Combinatorics: planar map determined by graph plus "clockwise cyclic ordering" of the edges surrounding each vertex. Number of planar maps with n edges is finite.

Planar maps and Tutte's enumeration

Planar map: finite graph embedded in plane, where two embeddings are equivalent if an orientation-preserving homeomorphism of $\mathbb{C} \cup\{\infty\}$ takes one to other. Figures below isomorphic as graphs but represent different planar maps.

Combinatorics: planar map determined by graph plus "clockwise cyclic ordering" of the edges surrounding each vertex. Number of planar maps with n edges is finite. Root: To eliminate the ambiguity from non-trivial automorphisms, specify "root" by fixing an oriented edge.

Planar maps and Tutte's enumeration

Planar map: finite graph embedded in plane, where two embeddings are equivalent if an orientation-preserving homeomorphism of $\mathbb{C} \cup\{\infty\}$ takes one to other. Figures below isomorphic as graphs but represent different planar maps.

Combinatorics: planar map determined by graph plus "clockwise cyclic ordering" of the edges surrounding each vertex. Number of planar maps with n edges is finite.
Root: To eliminate the ambiguity from non-trivial automorphisms, specify "root" by fixing an oriented edge.
Country map to planar map: given map of, say, South America, can draw vertex in center of each country, edge between countries with non-trivial border.

Planar maps and Tutte's enumeration

Planar map: finite graph embedded in plane, where two embeddings are equivalent if an orientation-preserving homeomorphism of $\mathbb{C} \cup\{\infty\}$ takes one to other. Figures below isomorphic as graphs but represent different planar maps.

Combinatorics: planar map determined by graph plus "clockwise cyclic ordering" of the edges surrounding each vertex. Number of planar maps with n edges is finite.
Root: To eliminate the ambiguity from non-trivial automorphisms, specify "root" by fixing an oriented edge.
Country map to planar map: given map of, say, South America, can draw vertex in center of each country, edge between countries with non-trivial border.
Famous 4-color conjecture: all planar maps 4-colorable. Formulation by Guthrie (1852), progress by Tutte, computer-assisted proof by Appel and Haken (1976).

Planar maps and Tutte's enumeration

Planar map: finite graph embedded in plane, where two embeddings are equivalent if an orientation-preserving homeomorphism of $\mathbb{C} \cup\{\infty\}$ takes one to other. Figures below isomorphic as graphs but represent different planar maps.

Combinatorics: planar map determined by graph plus "clockwise cyclic ordering" of the edges surrounding each vertex. Number of planar maps with n edges is finite.
Root: To eliminate the ambiguity from non-trivial automorphisms, specify "root" by fixing an oriented edge.
Country map to planar map: given map of, say, South America, can draw vertex in center of each country, edge between countries with non-trivial border.
Famous 4-color conjecture: all planar maps 4-colorable. Formulation by Guthrie (1852), progress by Tutte, computer-assisted proof by Appel and Haken (1976).

Tutte 1962-1963: Number of rooted planar maps with n edges is $\frac{2}{n+2} \cdot \frac{3^{n}}{n+1}\binom{2 n}{n}$.

Planar maps and Tutte's enumeration

Planar map: finite graph embedded in plane, where two embeddings are equivalent if an orientation-preserving homeomorphism of $\mathbb{C} \cup\{\infty\}$ takes one to other. Figures below isomorphic as graphs but represent different planar maps.

Combinatorics: planar map determined by graph plus "clockwise cyclic ordering" of the edges surrounding each vertex. Number of planar maps with n edges is finite.
Root: To eliminate the ambiguity from non-trivial automorphisms, specify "root" by fixing an oriented edge.
Country map to planar map: given map of, say, South America, can draw vertex in center of each country, edge between countries with non-trivial border.
Famous 4-color conjecture: all planar maps 4-colorable. Formulation by Guthrie (1852), progress by Tutte, computer-assisted proof by Appel and Haken (1976).

Tutte 1962-1963: Number of rooted planar maps with n edges is $\frac{2}{n+2} \cdot \frac{3^{n}}{n+1}\binom{2 n}{n}$.
Asymptotically: $C \beta^{n} n^{-7 / 2+k}$ with $C=\frac{2}{\sqrt{\pi}}$ and $\beta=12$ and $k=1$.

Planar maps and Tutte's enumeration

Planar map: finite graph embedded in plane, where two embeddings are equivalent if an orientation-preserving homeomorphism of $\mathbb{C} \cup\{\infty\}$ takes one to other. Figures below isomorphic as graphs but represent different planar maps.

Combinatorics: planar map determined by graph plus "clockwise cyclic ordering" of the edges surrounding each vertex. Number of planar maps with n edges is finite.
Root: To eliminate the ambiguity from non-trivial automorphisms, specify "root" by fixing an oriented edge.
Country map to planar map: given map of, say, South America, can draw vertex in center of each country, edge between countries with non-trivial border.
Famous 4-color conjecture: all planar maps 4-colorable. Formulation by Guthrie (1852), progress by Tutte, computer-assisted proof by Appel and Haken (1976).

Tutte 1962-1963: Number of rooted planar maps with n edges is $\frac{2}{n+2} \cdot \frac{3^{n}}{n+1}\binom{2 n}{n}$.
Asymptotically: $C \beta^{n} n^{-7 / 2+k}$ with $C=\frac{2}{\sqrt{\pi}}$ and $\beta=12$ and $k=1$.
Triangulation: planar map in which all faces are triangles.

Planar maps and Tutte's enumeration

Planar map: finite graph embedded in plane, where two embeddings are equivalent if an orientation-preserving homeomorphism of $\mathbb{C} \cup\{\infty\}$ takes one to other. Figures below isomorphic as graphs but represent different planar maps.

Combinatorics: planar map determined by graph plus "clockwise cyclic ordering" of the edges surrounding each vertex. Number of planar maps with n edges is finite.
Root: To eliminate the ambiguity from non-trivial automorphisms, specify "root" by fixing an oriented edge.
Country map to planar map: given map of, say, South America, can draw vertex in center of each country, edge between countries with non-trivial border.
Famous 4-color conjecture: all planar maps 4-colorable. Formulation by Guthrie (1852), progress by Tutte, computer-assisted proof by Appel and Haken (1976).

Tutte 1962-1963: Number of rooted planar maps with n edges is $\frac{2}{n+2} \cdot \frac{3^{n}}{n+1}\binom{2 n}{n}$.
Asymptotically: $C \beta^{n} n^{-7 / 2+k}$ with $C=\frac{2}{\sqrt{\pi}}$ and $\beta=12$ and $k=1$.
Triangulation: planar map in which all faces are triangles.
Quadrangulations: planar map in which all faces are quadrilaterals.

Brownian sphere: metric space limit of random planar map

Uniformly random planar map: choose uniformly from the set of all planar maps with fixed number of edges. (Similarly define uniformly random triangulation, etc.)

Brownian sphere: metric space limit of random planar map

Uniformly random planar map: choose uniformly from the set of all planar maps with fixed number of edges. (Similarly define uniformly random triangulation, etc.) Brownian sphere: interpret uniformly random quadrangulation with n faces (or other variant) as metric measure space, take weak Gromov-Hausdorff-Prokorov limit to get continuum random metric measure space. (See Cori-Vauquelin-Schaeffer, Marckert-Mokkadem, Le Gall, Miermont, Chassaing, Paulin.)

Brownian sphere: metric space limit of random planar map

Uniformly random planar map: choose uniformly from the set of all planar maps with fixed number of edges. (Similarly define uniformly random triangulation, etc.) Brownian sphere: interpret uniformly random quadrangulation with n faces (or other variant) as metric measure space, take weak Gromov-Hausdorff-Prokorov limit to get continuum random metric measure space. (See Cori-Vauquelin-Schaeffer, Marckert-Mokkadem, Le Gall, Miermont, Chassaing, Paulin.)
Benedikt Stufler's simulations: color vertices by their mean distance to others https://www.dmg.tuwien.ac.at/stufler/gabmanim.html

2. PEANOSPHERE: A MATING OF RANDOM TREES

Warmup: matings of deterministic fractal trees

Idea of mating: Both the Brownian sphere and peanosphere are defined in the continuum as "matings of random fractal trees."

Warmup: matings of deterministic fractal trees

Idea of mating: Both the Brownian sphere and peanosphere are defined in the continuum as "matings of random fractal trees."
Warmup: Before getting into that, consider matings of deterministic fractal trees.

Warmup: matings of deterministic fractal trees

Idea of mating: Both the Brownian sphere and peanosphere are defined in the continuum as "matings of random fractal trees."
Warmup: Before getting into that, consider matings of deterministic fractal trees. Julia sets (Julia 1918, popularized by Mandelbrot in 1980's): Set K of points that remain bounded under repeated application of $\phi(z)=z^{2}+c$ (where c is fixed).

Warmup: matings of deterministic fractal trees

Idea of mating: Both the Brownian sphere and peanosphere are defined in the continuum as "matings of random fractal trees."
Warmup: Before getting into that, consider matings of deterministic fractal trees. Julia sets (Julia 1918, popularized by Mandelbrot in 1980's): Set K of points that remain bounded under repeated application of $\phi(z)=z^{2}+c$ (where c is fixed).
Interesting obsevation: ϕ fixes K and is also a 2-to-1 conformal map from the complement of K to itself. The ϕ pre-image of a small ball intersecting K is two small blobs containing K. Pre-image of that is four small blobs, etc. This accounts for approximate self-similarity.

Warmup: matings of deterministic fractal trees

Idea of mating: Both the Brownian sphere and peanosphere are defined in the continuum as "matings of random fractal trees."
Warmup: Before getting into that, consider matings of deterministic fractal trees. Julia sets (Julia 1918, popularized by Mandelbrot in 1980's): Set K of points that remain bounded under repeated application of $\phi(z)=z^{2}+c$ (where c is fixed).
Interesting obsevation: ϕ fixes K and is also a 2-to-1 conformal map from the complement of K to itself. The ϕ pre-image of a small ball intersecting K is two small blobs containing K. Pre-image of that is four small blobs, etc. This accounts for approximate self-similarity.
Mating Julia sets: Two Julia sets can be "mated" (glued together along their boundaries) to make a sphere. (Douady 1983, Milnor 1994)

Warmup: matings of deterministic fractal trees

Idea of mating: Both the Brownian sphere and peanosphere are defined in the continuum as "matings of random fractal trees."
Warmup: Before getting into that, consider matings of deterministic fractal trees. Julia sets (Julia 1918, popularized by Mandelbrot in 1980's): Set K of points that remain bounded under repeated application of $\phi(z)=z^{2}+c$ (where c is fixed).
Interesting obsevation: ϕ fixes K and is also a 2-to-1 conformal map from the complement of K to itself. The ϕ pre-image of a small ball intersecting K is two small blobs containing K. Pre-image of that is four small blobs, etc. This accounts for approximate self-similarity.
Mating Julia sets: Two Julia sets can be "mated" (glued together along their boundaries) to make a sphere. (Douady 1983, Milnor 1994)

Arnaud Chéritat's simulations:

https://www.math.univ-toulouse.fr/~cheritat/MatMovies/

Google search for Julia sets


```
c=I; S = 2000; A = Table[0, {j, 1, S}, {k, 1, S}]; For[i = 0, i < S, i++;
For[j = 0, j < S, j++; count = 0; x = 3 (i I + j)/S - 1.5 - 1.5 I;
    While[Abs[x] <= 3 && count <= 50, x = x^2 + c; ++count]; A[[i, j]] = count]]; ArrayPlot[A/25, ColorFunction -> "Rainbow"]
```


Student asks: what's the "canonical random tree"?

INSTRUCTOR: Aldous (1993) constructed continuum random tree (a.k.a. Brownian tree) from a Brownian excursion. You start with graph of the Brownian excursion and then identify points connected by horizontal line segment that lies below graph except at endpoints. Result is a random metric space (distance measures "how far up and down" one has to go.

Student asks: what's the "canonical random tree"?

INSTRUCTOR: Aldous (1993) constructed continuum random tree (a.k.a. Brownian tree) from a Brownian excursion. You start with graph of the Brownian excursion and then identify points connected by horizontal line segment that lies below graph except at endpoints. Result is a random metric space (distance measures "how far up and down" one has to go.

STUDENT: Is there a discrete analog of this?

Student asks: what's the "canonical random tree"?

INSTRUCTOR: Aldous (1993) constructed continuum random tree (a.k.a. Brownian tree) from a Brownian excursion. You start with graph of the Brownian excursion and then identify points connected by horizontal line segment that lies below graph except at endpoints. Result is a random metric space (distance measures "how far up and down" one has to go.

STUDENT: Is there a discrete analog of this?
INSTRUCTOR: Yes! Just consider a tree embedded in the plane with n edges and a distinguished root. As one traces the outer boundary of the tree clockwise, distance from root performs a simple walk on Z_{+}with $2 n$ steps, starting and ending at 0 .

Student asks: what's the "canonical random tree"?

INSTRUCTOR: Aldous (1993) constructed continuum random tree (a.k.a. Brownian tree) from a Brownian excursion. You start with graph of the Brownian excursion and then identify points connected by horizontal line segment that lies below graph except at endpoints. Result is a random metric space (distance measures "how far up and down" one has to go.

STUDENT: Is there a discrete analog of this?
INSTRUCTOR: Yes! Just consider a tree embedded in the plane with n edges and a distinguished root. As one traces the outer boundary of the tree clockwise, distance from root performs a simple walk on Z_{+}with $2 n$ steps, starting and ending at 0 .
Bijection between n-vertex rooted planar trees and simple walks on Z_{+}with $2 n$ steps, starting and ending at 0 .

Student asks: what's the "canonical random tree"?

INSTRUCTOR: Aldous (1993) constructed continuum random tree (a.k.a. Brownian tree) from a Brownian excursion. You start with graph of the Brownian excursion and then identify points connected by horizontal line segment that lies below graph except at endpoints. Result is a random metric space (distance measures "how far up and down" one has to go.

STUDENT: Is there a discrete analog of this?
INSTRUCTOR: Yes! Just consider a tree embedded in the plane with n edges and a distinguished root. As one traces the outer boundary of the tree clockwise, distance from root performs a simple walk on Z_{+}with $2 n$ steps, starting and ending at 0 .
Bijection between n-vertex rooted planar trees and simple walks on Z_{+}with $2 n$ steps, starting and ending at 0.

Brownian tree is the (limiting) "uniformly random planar tree" of a given size.

MATING RANDOM TREES

X, Y independent Brownian excursions on $[0,1]$. Pick $C>0$ large so that the graphs of X and $C-Y$ are disjoint.

t

MATING RANDOM TREES

X, Y independent Brownian excursions on $[0,1]$. Pick $C>0$ large so that the graphs of X and $C-Y$ are disjoint.

Identify points on the graph of X if they are connected by a horizontal line which is below the graph; yields a continuum random tree (CRT)

MATING RANDOM TREES

X, Y independent Brownian excursions on $[0,1]$. Pick $C>0$ large so that the graphs of X and $C-Y$ are disjoint.

Identify points on the graph of X if they are connected by a horizontal line which is below the graph; yields a continuum random tree (CRT)
Same for $C-Y_{t}$ yields an independent CRT

MATING RANDOM TREES

X, Y independent Brownian excursions on $[0,1]$. Pick $C>0$ large so that the graphs of X and $C-Y$ are disjoint.

t

Identify points on the graph of X if they are connected by a horizontal Tine which is below the graph; yields a continuum random tree (CRT)
Same for $C-Y_{t}$ yields an independent CRT
Glue the CRTs together by declaring points on the vertical lines to be equivalent

MATING RANDOM TREES

X, Y independent Brownian excursions on $[0,1]$. Pick $C>0$ large so that the graphs of X and $C-Y$ are disjoint.

Identify points on the graph of X if they are connected by a horizontal Tine which is below the graph; yields a continuum random tree (CRT)
Same for $C-Y_{t}$ yields an independent CRT
Glue the CRTs together by declaring points on the vertical lines to be equivalent
Q: What is the resulting structure?

MATING RANDOM TREES

X, Y independent Brownian excursions on $[0,1]$. Pick $C>0$ large so that the graphs of X and $C-Y$ are disjoint.

Identify points on the graph of X if they are connected by a horizontal Tine which is below the graph; yields a continuum random tree (CRT)
Same for $C-Y_{t}$ yields an independent CRT
Glue the CRTs together by declaring points on the vertical lines to be equivalent
Q: What is the resulting structure? A: Sphere with a space-filling path.

MATING RANDOM TREES

X, Y independent Brownian excursions on $[0,1]$. Pick $C>0$ large so that the graphs of X and $C-Y$ are disjoint.

Identify points on the graph of X if they are connected by a horizontal Tine which is below the graph; yields a continuum random tree (CRT)
Same for $C-Y_{t}$ yields an independent CRT
Glue the CRTs together by declaring points on the vertical lines to be equivalent
Q: What is the resulting structure? A: Sphere with a space-filling path. A peanosphere.

Surface is topologically a sphere by Moore's theorem

Theorem (Moore 1925)
Let \cong be any topologically closed equivalence relation on the sphere S^{2}. Assume that each equivalence class is connected and not equal to all of S^{2}. Then the quotient space S^{2} / \cong is homeomorphic to S^{2} if and only if no equivalence class separates the sphere into two or more connected components.

An equivalence relation is topologically closed iff for any two sequences (x_{n}) and $\left(y_{n}\right)$ with

$$
\begin{aligned}
& x_{n} \cong y_{n} \text { for all } n \\
& x_{n} \rightarrow x \text { and } y_{n} \rightarrow y
\end{aligned}
$$

we have that $x \cong y$.

Correspondence: quadrangulations and planar maps

Discrete version of mating of trees: Mullin's bijection

Walk in \mathbb{Z}^{2} starting/ ending at origin: Produce map. If the black edges are erased, one is left with a red quadrangulation \mathcal{Q}.

Discrete version of mating of trees: Mullin's bijection

Walk in \mathbb{Z}^{2} starting/ ending at origin: Produce map. If the black edges are erased, one is left with a red quadrangulation \mathcal{Q}.
Q is bipartite: blue and green vertices are the two classes. Each quadrilateral in \mathcal{Q} has one blue-to-blue diagonal. These diagonals form a planar map M (and given M one can reconstruct Q).

Discrete version of mating of trees: Mullin's bijection

Walk in \mathbb{Z}^{2} starting/ ending at origin: Produce map. If the black edges are erased, one is left with a red quadrangulation \mathcal{Q}.
Q is bipartite: blue and green vertices are the two classes. Each quadrilateral in \mathcal{Q} has one blue-to-blue diagonal. These diagonals form a planar map M (and given M one can reconstruct Q).
Blue tree T is a spanning tree of M. The green-to-green diagonals of \mathcal{Q} form dual graph M^{*}, and the green tree T^{*} is the dual spanning tree.

Discrete version of mating of trees: Mullin's bijection

Walk in \mathbb{Z}^{2} starting/ ending at origin: Produce map. If the black edges are erased, one is left with a red quadrangulation \mathcal{Q}.
Q is bipartite: blue and green vertices are the two classes. Each quadrilateral in \mathcal{Q} has one blue-to-blue diagonal. These diagonals form a planar map M (and given M one can reconstruct Q).
Blue tree T is a spanning tree of M. The green-to-green diagonals of \mathcal{Q} form dual graph M^{*}, and the green tree T^{*} is the dual spanning tree.
Bijection between
Simple walks $\left(X_{n}, Y_{n}\right)$ in \mathbb{Z}_{+}^{2} that start/end at origin.
Pairs (M, T) with M a rooted planar map, T a spanning tree of M.

Discrete version of mating of trees: Mullin's bijection

Walk in \mathbb{Z}^{2} starting/ ending at origin: Produce map. If the black edges are erased, one is left with a red quadrangulation \mathcal{Q}.
Q is bipartite: blue and green vertices are the two classes. Each quadrilateral in \mathcal{Q} has one blue-to-blue diagonal. These diagonals form a planar map M (and given M one can reconstruct Q).
Blue tree T is a spanning tree of M. The green-to-green diagonals of \mathcal{Q} form dual graph M^{*}, and the green tree T^{*} is the dual spanning tree.
Bijection between
Simple walks $\left(X_{n}, Y_{n}\right)$ in \mathbb{Z}_{+}^{2} that start/end at origin.
Pairs (M, T) with M a rooted planar map, T a spanning tree of M. Random $\left(X_{n}, Y_{n}\right)$ yields random $(M, T) . P(M) \sim \#$ spanning trees of M.

Remark about Laplacian determinants

Probability measure on N-edge maps with $P(M) \sim \#$ spanning trees of M.

Remark about Laplacian determinants

Probability measure on N-edge maps with $P(M) \sim$ \# spanning trees of M. Kirchhoff's Matrix Tree Theorem: number of spanning trees of M is a form of Laplacian determinant $\operatorname{det} \Delta$.

Remark about Laplacian determinants

Probability measure on N-edge maps with $P(M) \sim$ \# spanning trees of M. Kirchhoff's Matrix Tree Theorem: number of spanning trees of M is a form of Laplacian determinant det Δ.
Classical: partition function of Gaussian free field on M is $(\operatorname{det} \Delta)^{-1 / 2}$.

Remark about Laplacian determinants

Probability measure on N-edge maps with $P(M) \sim$ \# spanning trees of M. Kirchhoff's Matrix Tree Theorem: number of spanning trees of M is a form of Laplacian determinant $\operatorname{det} \Delta$.
Classical: partition function of Gaussian free field on M is $(\operatorname{det} \Delta)^{-1 / 2}$. Similarly: partition function for d-dimensional GFF is $(\operatorname{det} \Delta)^{-d / 2}$.

Remark about Laplacian determinants

Probability measure on N-edge maps with $P(M) \sim$ \# spanning trees of M. Kirchhoff's Matrix Tree Theorem: number of spanning trees of M is a form of Laplacian determinant $\operatorname{det} \Delta$.
Classical: partition function of Gaussian free field on M is $(\operatorname{det} \Delta)^{-1 / 2}$. Similarly: partition function for d-dimensional GFF is $(\operatorname{det} \Delta)^{-d / 2}$. Intuition: surfaces that have a lot of spanning trees have relatively fewer embeddings in \mathbb{R}^{d} and vice versa.

Remark about Laplacian determinants

Probability measure on N-edge maps with $P(M) \sim$ \# spanning trees of M. Kirchhoff's Matrix Tree Theorem: number of spanning trees of M is a form of Laplacian determinant $\operatorname{det} \Delta$.
Classical: partition function of Gaussian free field on M is $(\operatorname{det} \Delta)^{-1 / 2}$. Similarly: partition function for d-dimensional GFF is $(\operatorname{det} \Delta)^{-d / 2}$. Intuition: surfaces that have a lot of spanning trees have relatively fewer embeddings in \mathbb{R}^{d} and vice versa.
d-dim embedded surface: $P(M) \sim(\# \text { spanning trees of } M)^{-d / 2}$.

Remark about Laplacian determinants

Probability measure on N-edge maps with $P(M) \sim \#$ spanning trees of M. Kirchhoff's Matrix Tree Theorem: number of spanning trees of M is a form of Laplacian determinant $\operatorname{det} \Delta$.
Classical: partition function of Gaussian free field on M is $(\operatorname{det} \Delta)^{-1 / 2}$.
Similarly: partition function for d-dimensional GFF is $(\operatorname{det} \Delta)^{-d / 2}$.
Intuition: surfaces that have a lot of spanning trees have relatively fewer embeddings in \mathbb{R}^{d} and vice versa.
d-dim embedded surface: $P(M) \sim(\# \text { spanning trees of } M)^{-d / 2}$.
Map: Connected map with smallest number spanning trees is a tree-think of maps with few spanning trees as being "more tree-like." Larger d makes maps "rougher" or more tree-like.

Remark about Laplacian determinants

Probability measure on N-edge maps with $P(M) \sim \#$ spanning trees of M. Kirchhoff's Matrix Tree Theorem: number of spanning trees of M is a form of Laplacian determinant $\operatorname{det} \Delta$.
Classical: partition function of Gaussian free field on M is $(\operatorname{det} \Delta)^{-1 / 2}$.
Similarly: partition function for d-dimensional GFF is $(\operatorname{det} \Delta)^{-d / 2}$.
Intuition: surfaces that have a lot of spanning trees have relatively fewer embeddings in \mathbb{R}^{d} and vice versa.
d-dim embedded surface: $P(M) \sim(\# \text { spanning trees of } M)^{-d / 2}$.
Map: Connected map with smallest number spanning trees is a tree-think of maps with few spanning trees as being "more tree-like." Larger d makes maps "rougher" or more tree-like.
Weirdly... if (M, T) is tree decorated random surface, the law of M is kind of a like "law of surface embedded in \mathbb{R}^{d} with $d=-2$."

Unconstrained variant

We remark that there is a variant of the Mullin bijection in which we relax the restriction that X_{n} is non-negative, see below.

Here we can imagine that the left and right sides of the above rectangle are glued to one another (so that both X_{n} and Y_{n} then become indexed by a circle).

2D walk $\left(X_{t}, Y_{t}\right)$, coordinates $X(t), C-Y(t)$.

```
n=2000;Z=Table[0,{j,1,n+1}];A=Z;B=Z;For[j=1,j<n,++j,A[[j+1]]=A[[j]]+If[2 RandomReal[]>1+A[[j]]/(n-j),1,-1];B[[j+1]]=B[[j]]
+If[2 RandomReal[]>1+B[[j]]/(n-j),1,-1]]; X=n/2+(A+B)/2;Y=n/2+(A-B)/2;{ListPlot[{X,n+Sqrt[n]-Y},PlotJoined->True,Axes->False],
Graphics[Table[Line[{{X[[j]],Y[[j]]},{X[[j+1]],Y[[j+1]]}}],{j,1,n}]]}
```


The corresponding pair of trees

vertnumX=Z+1; vertnum $Y=Z+1$;last $=Z+1$;minxloc=1; minyloc=1; For $[j=1, j<n+1,++j$, If $[X[[j]]<X[[\operatorname{minx} l o c]], \operatorname{minxloc}=j]$; If $[Y[[j]]<Y[[m i n y l o c]]$, minyloc $=j]]$; count $=1$;
For $[j=\operatorname{minx} 1 o c, j<n+1,++j, \operatorname{If}[X[[j+1]]>X[[j]]$, vertnumX $[[j+1]]=++$ count $;$ last $[[X[[j+1]]]]=$ count, vertnumX[[j+1]]= last[[X[[j+1]]]]]]; vertnumX[[1]] = vertnumX[[n + 1]];
For $[j=1, j<\operatorname{minx} 1 o c-1,++j, \operatorname{If}[X[[j+1]]>X[[j]]$, vertnum $[[j+1]]=++$ count $; 1$ ast $[[X[[j+1]]]]=$ count, $\operatorname{vertnumX[[j+1]]=}$ last $[[X[[j+1]]]]]]$; vertnum $Y[[\operatorname{minyloc}]]=++$ count; last $=Z+\operatorname{count} ;$ For $[j=\operatorname{minyloc}, j<n+1,++j$, $\operatorname{If}[Y[[j+1]]>Y[[j]]$, vertnum $[[[j+1]]=++$ count ; last $[[Y[[j+1]]]]=$ count, vertnumY[[j +1$]]=$ last $[[Y[[j+1]]]]]]$;
 last $[[Y[[j+1]]]]=$ count, $\operatorname{vertnumY}[[j+1]]=\operatorname{last}[[Y[[j+1]]]]]]$;
\{GraphPlot[SimpleGraph[Table[Style[vertnumX[[j]] <-> vertnumX[[j + 1]], Blue], \{j,1,n\}]], VertexStyle -> Blue, GraphLayout -> \{"SpringEmbedding"\}], GraphPlot[SimpleGraph[Table[Style[vertnumY[[j]] <-> vertnumY[[j + 1]], Green], \{j, $1, \mathrm{n}\}]$], VertexStyle -> Green, GraphLayout -> \{"SpringEmbedding"\}]\}

Add red edges connecting two trees to make planar map

$\mathrm{g}=$ Table [0->0, $\{\mathrm{j}, 1,3 \mathrm{n} / 2\}]$; count $=1 ;$ For $[\mathrm{j}=1, \mathrm{j}<=\mathrm{n},++\mathrm{j}, \mathrm{g}[[$ count++]]=Style[vertnumX[[j]]<->vertnumY[[j]],Red]];For[j=1,j<=n,++j,
 $\mathrm{g}[[$ count++]]=Style[vertnumY[[j]]<->vertnumY[[j+1]], Green]]];
GraphPlot3D[g, VertexStyle->Table[i ->If [i<vertnumY[[minyloc]],Blue,Green],\{i,1,n/2+2\}],GraphLayout ->\{"SpringElectricalEmbedding"\}]

Remove trees, show just quadrangulation (red edges)

M=SparseArray [Table[0,\{j,1,n/2+2\},\{k,1,n/2+2\}]];For[j=1,j<n+1,j++,M[[vertnumX[[j]],vertnumY[[j]]]]+=1]; x=GraphPlot3D [M, GraphLayout \rightarrow \{"SpringElectricalEmbedding"\}, VertexShapeFunction->None]

Typing code below after making 3D figure makes animated spinning version.
ResourceFunction["ExportRotatingGIF"]["C:
filename.gif", \%, ImageSize -> 1200]

Changing the correlation parameter

Correlation: Instead of taking X_{t} and Y_{t} to be independent Brownian motions, we can make them correlated. Varying the correlation coefficient ρ (between -1 and 1) gives a 1 parameter family of random surfaces.

Changing the correlation parameter

Correlation: Instead of taking X_{t} and Y_{t} to be independent Brownian motions, we can make them correlated. Varying the correlation coefficient ρ (between -1 and 1) gives a 1 parameter family of random surfaces.

Relation to d : It turns out (though not obvious) that changing ρ is in some sense equivalent to changing d. As d goes from $-\infty$ to 1 , the value ρ goes from -1 to 1 .

Changing the correlation parameter

Correlation: Instead of taking X_{t} and Y_{t} to be independent Brownian motions, we can make them correlated. Varying the correlation coefficient ρ (between -1 and 1) gives a 1 parameter family of random surfaces.

Relation to d : It turns out (though not obvious) that changing ρ is in some sense equivalent to changing d. As d goes from $-\infty$ to 1 , the value ρ goes from -1 to 1 .
Intuition: Highly correlated Brownian trees produce rougher, more tree-like surfaces. Highly anti-correlated produce smoother, more sphere-like surfaces.

Changing the correlation parameter

Correlation: Instead of taking X_{t} and Y_{t} to be independent Brownian motions, we can make them correlated. Varying the correlation coefficient ρ (between -1 and 1) gives a 1 parameter family of random surfaces.

Relation to d : It turns out (though not obvious) that changing ρ is in some sense equivalent to changing d. As d goes from $-\infty$ to 1 , the value ρ goes from -1 to 1 .
Intuition: Highly correlated Brownian trees produce rougher, more tree-like surfaces. Highly anti-correlated produce smoother, more sphere-like surfaces.

Decorated planar maps: Sometimes decorated planar maps (e.g. by percolation, Ising model, spanning trees) are encoded by correlated pairs of trees.

Changing the correlation parameter

Correlation: Instead of taking X_{t} and Y_{t} to be independent Brownian motions, we can make them correlated. Varying the correlation coefficient ρ (between -1 and 1) gives a 1 parameter family of random surfaces.

Relation to d : It turns out (though not obvious) that changing ρ is in some sense equivalent to changing d. As d goes from $-\infty$ to 1 , the value ρ goes from -1 to 1 .
Intuition: Highly correlated Brownian trees produce rougher, more tree-like surfaces. Highly anti-correlated produce smoother, more sphere-like surfaces.

Decorated planar maps: Sometimes decorated planar maps (e.g. by percolation, Ising model, spanning trees) are encoded by correlated pairs of trees.
$d=-7$: Jeremie Bettinelli's bipolar-orientation-decorated maps https://www.normalesup.org/~bettinel/simul_bom.html

Changing the correlation parameter

Correlation: Instead of taking X_{t} and Y_{t} to be independent Brownian motions, we can make them correlated. Varying the correlation coefficient ρ (between -1 and 1) gives a 1 parameter family of random surfaces.

Relation to d : It turns out (though not obvious) that changing ρ is in some sense equivalent to changing d. As d goes from $-\infty$ to 1 , the value ρ goes from -1 to 1 .
Intuition: Highly correlated Brownian trees produce rougher, more tree-like surfaces. Highly anti-correlated produce smoother, more sphere-like surfaces.

Decorated planar maps: Sometimes decorated planar maps (e.g. by percolation, Ising model, spanning trees) are encoded by correlated pairs of trees.
$d=-7$: Jeremie Bettinelli's bipolar-orientation-decorated maps https://www.normalesup.org/~bettinel/simul_bom.html
$d=-12.5$: Benedikt Stufler's Schnyder-Wood Decorated Map https://www.dmg.tuwien.ac.at/stufler/gatranim.html

Changing the correlation parameter

Correlation: Instead of taking X_{t} and Y_{t} to be independent Brownian motions, we can make them correlated. Varying the correlation coefficient ρ (between -1 and 1) gives a 1 parameter family of random surfaces.

Relation to d : It turns out (though not obvious) that changing ρ is in some sense equivalent to changing d. As d goes from $-\infty$ to 1 , the value ρ goes from -1 to 1 .

Intuition: Highly correlated Brownian trees produce rougher, more tree-like surfaces. Highly anti-correlated produce smoother, more sphere-like surfaces.

Decorated planar maps: Sometimes decorated planar maps (e.g. by percolation, Ising model, spanning trees) are encoded by correlated pairs of trees.
$d=-7$: Jeremie Bettinelli's bipolar-orientation-decorated maps https://www.normalesup.org/~bettinel/simul_bom.html
$d=-12.5$: Benedikt Stufler's Schnyder-Wood Decorated Map https://www.dmg.tuwien.ac.at/stufler/gatranim.html
$d=.5$: Jeremie Bettinelli's FK-Ising bipolar-orientation-decorated maps
https://www.normalesup.org/~bettinel/simul_FK.html

Ĩ. BROWNIAN SPHERE:

A MATING OF A DIFFERENT PAIR OF RANDOM TREES RELATED TO BROWNIAN SNAKE

Cori-Vauquelin-Schaeffer bijection helps us enumerate rooted maps M (or rooted quadrangulations \mathcal{Q}) instead of (M, T) pairs. Similar to the Mullin bijection but with a few key differences.

Cori-Vauquelin-Schaeffer bijection helps us enumerate rooted maps M (or rooted quadrangulations \mathcal{Q}) instead of (M, T) pairs. Similar to the Mullin bijection but with a few key differences.

1. Instead of requiring $\left(X_{n}, Y_{n}\right)$ to traverse lattice edges we at each step allow Y_{n} to change by ± 1 and X_{n} by either 0 or ± 1.

Cori-Vauquelin-Schaeffer bijection helps us enumerate rooted maps M (or rooted quadrangulations \mathcal{Q}) instead of (M, T) pairs. Similar to the Mullin bijection but with a few key differences.

1. Instead of requiring $\left(X_{n}, Y_{n}\right)$ to traverse lattice edges we at each step allow Y_{n} to change by ± 1 and X_{n} by either 0 or ± 1.
2. Instead of perfectly horizontal green chords, we draw chords that are one unit higher on the right than on the left. We draw one such chord leftward starting at each vertex on the graph of X_{n}, which means that we have to add an extra vertex of minimal height as shown.

Cori-Vauquelin-Schaeffer bijection helps us enumerate rooted maps M (or rooted quadrangulations \mathcal{Q}) instead of (M, T) pairs. Similar to the Mullin bijection but with a few key differences.

1. Instead of requiring $\left(X_{n}, Y_{n}\right)$ to traverse lattice edges we at each step allow Y_{n} to change by ± 1 and X_{n} by either 0 or ± 1.
2. Instead of perfectly horizontal green chords, we draw chords that are one unit higher on the right than on the left. We draw one such chord leftward starting at each vertex on the graph of X_{n}, which means that we have to add an extra vertex of minimal height as shown.

3. We consider only $\left(X_{n}, Y_{n}\right)$ pairs for which the above picture has a special property: namely, whenever two red vertical lines are incident to the same blue chord, their lower endpoints have the same height.

Collapse blue to make tree. Condition 3 says two red edges starting at same blue vertex have same green vertex height-label each red vertex by that height.

Then shrink the red edges to points.

The construction above yields a bijection between

1. Well-labeled rooted planar trees (T, ℓ). Here ℓ maps vertices of T to positive integers; root has label 1 , adjacent vertices differ by 0 or ± 1.
2. Rooted quadrangulations \mathcal{Q}.

Markovian discrete snake: Condition on head height Y_{k} staying non-negative with $Y_{0}=Y_{2 n}=0$. Let X_{n} be horizontal coordinate.

Markovian discrete snake: Condition on head height Y_{k} staying non-negative with $Y_{0}=Y_{2 n}=0$. Let X_{n} be horizontal coordinate.
Brownian snake: Rescaling gives continuum Brownian snake (process by Le Gall in 1990's, term coined by Dynkin and Kuznetsov).

3. DEFINING THE LQG SPHERE USING THE GAUSSIAN FREE

 FIELD
Conformal maps (from David Gu's web gallery)

```
- Riemann Surface: Rieman *
\square

Riemann Uniformization
All metric surfaces can be conformally mapped to three canonical spaces, the sphere, the plane and the hyperbolic plane.
Genus zero closed surface


\section*{Picking a surface at random in the continuum}

Uniformization theorem: every simply connected Riemannian surface can be conformally mapped to either the unit disk, the plane, or the sphere \(S^{2}\) in \(R^{3}\)


\section*{Picking a surface at random in the continuum}

Uniformization theorem: every simply connected Riemannian surface can be conformally mapped to either the unit disk, the plane, or the sphere \(S^{2}\) in \(R^{3}\)


Isothermal coordinates: Metric for the surface takes the form \(e^{\rho(z)} d z\) for some smooth function \(\rho\) where \(d z\) is the Euclidean metric.

\section*{Picking a surface at random in the continuum}

Uniformization theorem: every simply connected Riemannian surface can be conformally mapped to either the unit disk, the plane, or the sphere \(S^{2}\) in \(R^{3}\)


Isothermal coordinates: Metric for the surface takes the form \(e^{\rho(z)} d z\) for some smooth function \(\rho\) where \(d z\) is the Euclidean metric.
\(\Rightarrow\) Can parameterize the space of surfaces with smooth functions.
If \(\rho=0\), get the same surface
If \(\Delta \rho=0\), i.e. if \(\rho\) is harmonic, the surface described is flat

\section*{Picking a surface at random in the continuum}

Uniformization theorem: every simply connected Riemannian surface can be conformally mapped to either the unit disk, the plane, or the sphere \(S^{2}\) in \(R^{3}\)


Isothermal coordinates: Metric for the surface takes the form \(e^{\rho(z)} d z\) for some smooth function \(\rho\) where \(d z\) is the Euclidean metric.
\(\Rightarrow\) Can parameterize the space of surfaces with smooth functions.
If \(\rho=0\), get the same surface
If \(\Delta \rho=0\), i.e. if \(\rho\) is harmonic, the surface described is flat
Question: Which measure on \(\rho\) ? If we want our surface to be a perturbation of a flat metric, natural to choose \(\rho\) as the canonical perturbation of a harmonic function.

\section*{The Gaussian free field}

The discrete Gaussian free field (DGFF) is a Gaussian random surface model.


\section*{The Gaussian free field}

The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
Measure on functions \(\phi: D \rightarrow \mathrm{R}\) for \(D \subseteq \mathrm{Z}^{2}\) and \(\left.\phi\right|_{\partial D}=\psi\) with density respect to Lebesgue measure on \(\mathrm{R}^{|D|}\) :
\[
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(\phi(x)-\phi(y))^{2}\right)
\]


\section*{The Gaussian free field}

The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
Measure on functions \(\phi: D \rightarrow \mathrm{R}\) for \(D \subseteq \mathrm{Z}^{2}\) and \(\left.\phi\right|_{\partial D}=\psi\) with density respect to Lebesgue measure on \(\mathrm{R}^{|D|}\) :
\[
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(\phi(x)-\phi(y))^{2}\right)
\]


Natural perturbation of a harmonic function

\section*{The Gaussian free field}

The discrete Gaussian free field (DGFF) is a Gaussian random surface model.

Measure on functions \(\phi: D \rightarrow \mathrm{R}\) for \(D \subseteq \mathrm{Z}^{2}\) and \(\left.\phi\right|_{\partial D}=\psi\) with density respect to Lebesgue measure on \(\mathrm{R}^{|D|}\) :
\[
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(\phi(x)-\phi(y))^{2}\right)
\]


Natural perturbation of a harmonic function
Fine mesh limit: converges to the continuum GFF, i.e. the standard Gaussian wrt the Dirichlet inner product
\[
(f, g)_{\nabla}=\frac{1}{2 \pi} \int \nabla f(x) \cdot \nabla g(x) d x
\]

\section*{The Gaussian free field}

The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
Measure on functions \(\phi: D \rightarrow \mathrm{R}\) for \(D \subseteq \mathrm{Z}^{2}\) and \(\left.\phi\right|_{\partial D}=\psi\) with density respect to Lebesgue measure on \(\mathrm{R}^{|D|}\) :
\[
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(\phi(x)-\phi(y))^{2}\right)
\]


Natural perturbation of a harmonic function
Fine mesh limit: converges to the continuum GFF, i.e. the standard Gaussian wrt the Dirichlet inner product
\[
(f, g)_{\nabla}=\frac{1}{2 \pi} \int \nabla f(x) \cdot \nabla g(x) d x
\]

Continuum GFF not a function - only a generalized function

Liouville quantum gravity: \(e^{\gamma \phi(z)} d z\) where \(\phi\) is a kind of GFF and \(\gamma \in[0,2)\)
\[
\gamma=0.5
\]

(Number of subdivisions)

Liouville quantum gravity: \(e^{\gamma \phi(z)} d z\) where \(\phi\) is a kind of GFF and \(\gamma \in[0,2)\) Random surface model: Polyakov, 1980. Motivated by string theory.
\[
\gamma=0.5
\]

(Number of subdivisions)

Liouville quantum gravity: \(e^{\gamma \phi(z)} d z\) where \(\phi\) is a kind of GFF and \(\gamma \in[0,2)\) Random surface model: Polyakov, 1980. Motivated by string theory.

Some ideas pre-date Polyakov, credits Douglas for "quadratic action".
\[
\gamma=0.5
\]

(Number of subdivisions)

Liouville quantum gravity: \(e^{\gamma \phi(z)} d z\) where \(\phi\) is a kind of GFF and \(\gamma \in[0,2)\) Random surface model: Polyakov, 1980. Motivated by string theory.

Some ideas pre-date Polyakov, credits Douglas for "quadratic action".

Rigorous construction of measure: Høegh-Krohn, 1971, \(\gamma \in[0, \sqrt{2})\). Kahane, 1985, \(\gamma \in[0,2)\).
\[
\gamma=0.5
\]

(Number of subdivisions)

Liouville quantum gravity: \(e^{\gamma \phi(z)} d z\) where \(\phi\) is a kind of GFF and \(\gamma \in[0,2)\) Random surface model: Polyakov, 1980. Motivated by string theory.

Some ideas pre-date Polyakov, credits Douglas for "quadratic action".

Rigorous construction of measure: Høegh-Krohn, 1971, \(\gamma \in[0, \sqrt{2})\). Kahane, 1985, \(\gamma \in[0,2)\).

Figure: draw square blocks that are "about same size" w.r.t. this measure.

(Number of subdivisions)

Liouville quantum gravity: \(e^{\gamma \phi(z)} d z\) where \(\phi\) is a kind of GFF and \(\gamma \in[0,2)\)

Random surface model: Polyakov, 1980. Motivated by string theory.

Some ideas pre-date Polyakov, credits Douglas for "quadratic action".

Rigorous construction of measure: Høegh-Krohn, 1971, \(\gamma \in[0, \sqrt{2})\). Kahane, 1985, \(\gamma \in[0,2)\).

Figure: draw square blocks that are "about same size" w.r.t. this measure.

(Number of subdivisions)

Liouville quantum gravity: \(e^{\gamma \phi(z)} d z\) where \(\phi\) is a kind of GFF and \(\gamma \in[0,2)\)

Random surface model: Polyakov, 1980. Motivated by string theory.

Some ideas pre-date Polyakov, credits Douglas for "quadratic action".

Rigorous construction of measure: Høegh-Krohn, 1971, \(\gamma \in[0, \sqrt{2})\). Kahane, 1985, \(\gamma \in[0,2)\).

Figure: draw square blocks that are "about same size" w.r.t. this measure.

(Number of subdivisions)

Liouville quantum gravity: \(e^{\gamma \phi(z)} d z\) where \(\phi\) is a kind of GFF and \(\gamma \in[0,2)\)

Random surface model: Polyakov, 1980. Motivated by string theory.

Some ideas pre-date Polyakov, credits Douglas for "quadratic action".

Rigorous construction of measure: Høegh-Krohn, 1971, \(\gamma \in[0, \sqrt{2})\). Kahane, 1985, \(\gamma \in[0,2)\).
Figure: draw square blocks that are "about same size" w.r.t. this measure.

Does not make literal sense as \(\phi\) takes values in the space of distributions.

(Number of subdivisions)

Liouville quantum gravity: \(e^{\gamma \phi(z)} d z\) where \(\phi\) is a kind of GFF and \(\gamma \in[0,2)\)

Random surface model: Polyakov, 1980. Motivated by string theory.

Some ideas pre-date Polyakov, credits Douglas for "quadratic action".

Rigorous construction of measure: Høegh-Krohn, 1971, \(\gamma \in[0, \sqrt{2})\). Kahane, 1985, \(\gamma \in[0,2)\).

Figure: draw square blocks that are "about same size" w.r.t. this measure.

Does not make literal sense as \(\phi\) takes values in the space of distributions.

Can make sense of random area measure using a regularization procedure.

(Number of subdivisions)

Liouville quantum gravity: \(e^{\gamma \phi(z)} d z\) where \(\phi\) is a kind of GFF and \(\gamma \in[0,2)\)

Random surface model: Polyakov, 1980. Motivated by string theory.

Some ideas pre-date Polyakov, credits Douglas for "quadratic action".

Rigorous construction of measure: Høegh-Krohn, 1971, \(\gamma \in[0, \sqrt{2})\). Kahane, 1985, \(\gamma \in[0,2)\).
Figure: draw square blocks that are "about same size" w.r.t. this measure.

Does not make literal sense as \(\phi\) takes values in the space of distributions.

Can make sense of random area measure using a regularization procedure.

(Number of subdivisions)

Liouville quantum gravity: \(e^{\gamma \phi(z)} d z\) where \(\phi\) is a kind of GFF and \(\gamma \in[0,2)\)

Random surface model: Polyakov, 1980. Motivated by string theory.

Some ideas pre-date Polyakov, credits Douglas for "quadratic action".

Rigorous construction of measure: Høegh-Krohn, 1971, \(\gamma \in[0, \sqrt{2})\). Kahane, 1985, \(\gamma \in[0,2)\).

Figure: draw square blocks that are "about same size" w.r.t. this measure.

Does not make literal sense as \(\phi\) takes values in the space of distributions.

Can make sense of random area measure using a regularization procedure.


Formally define surface to be pair ( \(D, \phi\) ) modulo coordinate change.

Areas of regions and lengths of curves
(Number of subdivisions) are well defined.

\section*{GFF and square subdivision for LQG measure}
\(K=8\); fieldmultiplier \(=1.5\); squarefraction \(=.001\);
phi=Re[Fourier[Table[(InverseErf[2 Random[]-1]+I InverseErf[2 Random[]-1])*If[j+k == 2,0, \(\left.\left.\left.\left.1 / \operatorname{Sqrt}\left[\left(\operatorname{Sin}\left[(j-1) * \operatorname{Pi} / 2^{\wedge} \mathrm{K}\right]^{\wedge} 2+\operatorname{Sin}\left[(\mathrm{k}-1) * \operatorname{Pi} / 2^{\wedge} \mathrm{K}\right]^{\wedge} 2\right)\right]\right],\left\{j, 2^{\wedge} \mathrm{K}\right\},\left\{\mathrm{k}, 2^{\wedge} \mathrm{K}\right\}\right]\right]\right]\);
MGFF=Exp[fieldmultiplier phi];CO = squarefraction \(\operatorname{Sum}\left[\operatorname{MGFF}[[i, j]],\left\{i, 1,2^{\wedge} K\right\},\left\{j, 1,2^{\wedge} K\right\}\right]\);
\{ListPlot3D[phi], Graphics[Table[Table[If[Sum[MGFF[[2^k m+i, 2^k n+j]], \{i,1, 2^k\}, \{j,1, 2^k\}]<CO,
\{Hue[k/8], EdgeForm[Thin], Rectangle[\{2^k m, \(\left.\left.\left.2^{\wedge} \mathrm{kn} n\right\},\left\{2^{\wedge} \mathrm{k} m+2^{\wedge} \mathrm{k}, 2^{\wedge} \mathrm{k} \mathrm{n}+2^{\wedge} \mathrm{k}\right\}\right]\right\}\) ],
\(\left.\left.\left.\left.\left\{\mathrm{m}, 0,2^{\wedge}(\mathrm{K}-\mathrm{k})-1\right\},\left\{\mathrm{n}, 0,2^{\wedge}(\mathrm{K}-\mathrm{k})-1\right\}\right],\{\mathrm{k}, 0, \mathrm{~K}-1\}\right]\right\}\right\}\)


\section*{Recall Mullin bijection}


When we delete the trees, we have a quadrangulation in which the edges come with a natural ordering. Also works for variant where tree root and dual-tree root are non-adjacent. Let's try a Smith embedding (with root and dual root for top and bottom) and color the squares according to that ordering.

\section*{Smith embedding}
\(M=M+\operatorname{Transpose}[M] ; \operatorname{deg}=\operatorname{Table}[\operatorname{Sum}[M[[i, j]],\{i, 1, n / 2+2\}],\{j, 1, n / 2+2\}] ; L=T a b l e[I f[i==j,-\operatorname{deg}[[i]], M[[i, j]]],\{i, 1, n / 2+2\},\{j, 1, n / 2+2\}] ;\) a=vertnumX[[minxloc]];b=vertnumY[[minyloc]]; For[j=1,j<=n/2+2,++j,L[[ a, j]]=0;L[[b, j]]=0];L[[a, a]] = 1; L[[b, b]] = 1; \(\mathrm{v}=\) Table \([0,\{j, 1, \mathrm{n} / 2+2\}] ; \mathrm{v}[\mathrm{a}]]=1 ; \mathrm{w}=\operatorname{LinearSolve}[\mathrm{N}[\mathrm{L}], \mathrm{N}[\mathrm{v}]] ;\) horiz \(=\operatorname{Table}[0,\{j, 1, \mathrm{n}+1\}]\);
vertgap=Table[w[[vertnumY[[j]]]]-w[[vertnumX[[j]]]], \{j,1,n+1\}];horiz[[1]] = 0; For[j = 1, j <= n, ++j, horiz[[j+1]]=horiz[[j]]+ vertgap [[j]]]; horizgap=Abs[horiz[[n+1]]];g=Table[0, \{j, 1, n\}];count=1;sq[bot_, top_, left_, hue_]=\{Hue[hue], EdgeForm[Thin],
 Rectangle[\{left, bot\}, \{left + (top - bot), top\}]\};g1=Table[sq[w[[vertnumX[[j]]]], w[[vertnumY[[j]]]], horiz[[j]], j/n],\{j,1,n\}]; g2=Table[ssq[w[[vertnumX[[j]]]], w[[vertnumY[[j]]]], horiz[[j]], j/n],\{j,1,n\}];
\{Graphics[\{g1,Translate[g1,\{horizgap, 0\}],Translate[g1,\{2 horizgap, 0\}]\}, PlotRange->\{\{0, horizgap\},\{0,1\}\}],
Graphics[\{g2,Translate[g2,\{horizgap, 0\}], Translate[g2,\{2 horizgap, 0\}]\}, PlotRange->\{\{0, horizgap,\(\{0,1\}\}]\}\)


\section*{Cylinder picture of Smith embedding}
cutoff \(=.0001\);rvsq[bot_, top_, left_, hue_]:= RevolutionPlot3D[\{1, \[Theta]\}, \{\[Theta], (2 Pi/horizgap)bot, (2 Pi/horizgap)top \(+.0000001\},\{p,(2 \mathrm{Pi} /\) horizgap \()\) left, (2 Pi/horizgap) (left \(+(\) top-bot \()+.0000001)\}\), Mesh \(>\) None, PlotStyle \(->\) Hue [hue], BoundaryStyle \(->\) \{None, Black \(\}]\); count=0; \(r=\operatorname{Table}[0,\{j, 1, n\}]\); \(\operatorname{For}[j=1, j<=n,++j, I f[\operatorname{Abs}[w[[v e r t n u m X[[j]]]]-w[[v e r t n u m Y[[j]]]]]>.0001\), \(r[[++\) count \(]]=r v s q[w[[v e r t n u m X[[j]]]], w[[v e r t n u m Y[[j]]]]\), horiz[[j]], \(j / n]]]\); Show[Table[r[[j]], \{j, 1, count\}], PlotRange \(\rightarrow\) All, Boxed \(\rightarrow\) False, Axes \(\rightarrow\) False]

\section*{Projection onto the sphere}
cutoff \(=.0001\); spsq[bot_, top_, left_, hue_]: =SphericalPlot3D[1, \{p,2ArcTan[Exp[(2 Pi/horizgap) (bot-1/2)]],2ArcTan[Exp[(2 Pi/horizgap) (top-1/2)]+.0000001]\},\{\[Theta], (2 Pi/horizgap) left, (2 Pi/ horizgap) (left + (top - bot)) +.0000001\},Mesh->None,PlotStyle -> Hue[hue], BoundaryStyle \(\rightarrow\) \{None, Black \(]\); count \(=0\); For \([j=1\), \(j<=n,++j\), If[Abs[w[[vertnumX[[j]]]] -w[[vertnumY[[j]]]]] > \(.0001, r[[++\operatorname{count}]]=\operatorname{spsq}[w[[\operatorname{vertnumX}[[j]]]]\), w[[vertnumY[[j]]]], horiz[[j]], j/n]]];Show[Table[r[[j]], \{j,1,count\}], PlotRange \(->\) All, Boxed \(\rightarrow\) False,Axes \(\rightarrow\) False]



Metric growth on \(\sqrt{8 / 3}\)-LQG surface. Picture by Jason Miller.

\section*{\(2 \leftrightarrow 3\). SLE-DECORATED LQG SPHERE IS EQUIVALENT TO PEANOSPHERE}

\section*{Random non-self-crossing path}

Given a simply connected planar domain \(D\) with boundary points \(a\) and \(b\) and a parameter \(\kappa \in[0, \infty)\), the Schramm-Loewner evolution \(\operatorname{SLE}_{\kappa}\) is a random non-self-crossing path in \(\bar{D}\) from \(a\) to \(b\).


The parameter \(\kappa\) roughly indicates how "windy" the path is. Would like to argue that SLE is in some sense the "canonical" random non-self-crossing path. What symmetries characterize SLE?

\section*{Conformal Markov property of SLE}


If \(\phi\) conformally maps \(D\) to \(\tilde{D}\) and \(\eta\) is an \(\operatorname{SLE}_{\kappa}\) from a to \(b\) in \(D\), then \(\phi \circ \eta\) is an \(\mathrm{SLE}_{\kappa}\) from \(\phi(a)\) to \(\phi(b)\) in \(\tilde{D}\).

\section*{Markov Property}

Given \(\eta\) up to a stopping time \(t \ldots\)

law of remainder is SLE in \(D \backslash \eta[0, t]\) from \(\eta(t)\) to \(b\).


\section*{Chordal Schramm-Loewner evolution (SLE)}

THEOREM [Oded Schramm]: Conformal invariance and the Markov property completely determine the law of SLE, up to a single parameter which we denote by \(\kappa \geq 0\).

\section*{Chordal Schramm-Loewner evolution (SLE)}

THEOREM [Oded Schramm]: Conformal invariance and the Markov property completely determine the law of SLE, up to a single parameter which we denote by \(\kappa \geq 0\).
Explicit construction: An SLE path \(\gamma\) from 0 to \(\infty\) in the complex upper half plane H can be defined in an interesting way: given path \(\gamma\) one can construct conformal maps \(g_{t}: \mathrm{H} \backslash \gamma([0, t]) \rightarrow \mathrm{H}\) (normalized to look like identity near infinity, i.e., \(\lim _{z \rightarrow \infty} g_{t}(z)-z=0\) ). In SLE \({ }_{\kappa}\), one defines \(g_{t}\) via an ODE (which makes sense for each fixed \(z\) ):
\[
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-W_{t}}, \quad g_{0}(z)=z,
\]
where \(W_{t}=\sqrt{\kappa} B_{t}=L A W B_{\kappa t}\) and \(B_{t}\) is ordinary Brownian motion.

\section*{SLE phases [Rohde, Schramm]}

\(\kappa \leq 4\)

\(\kappa \in(4,8)\)

\(\kappa \geq 8\)

\section*{Bond percolation: toss coin for each edge}


\section*{Site percolation: toss coin to color each face}
\(\mathrm{n}=40\); Graphics[Table[\{If[(i-n)(j-n)==0,Blue, If[i \(j==0\), Yellow, If[RandomInteger[1] \(==1\), Yellow, Blue] ]], RegularPolygon[i\{-Sqrt[3],-1\}+j\{-Sqrt [3] , 1\}, \{1, 0\}, 6]\}, \(\{\mathrm{i}, 0, \mathrm{n}\},\{\mathrm{j}, 0, \mathrm{n}\}]]\)


Left boundary: blue. Right boundary: yellow. Blue-yellow interface: loops plus one long path. Path converges in law to SLE \(_{6}\). Stanislav Smirnov (ICM 2010 Fields Medal). Camia and Newman. Ising model: another random coloring with conformal invariant limit. \(\mathrm{SLE}_{3}\) and \(\mathrm{SLE}_{16 / 3}\). Smirnov plus Chelkak, Duminil-Copin, Hongler, Izyurov, Kemppainen.

\section*{Percolation interface}


Uniform spanning tree (white), dual (red), interface (black)


Black interface converges to SLE \(_{8}\) loop. Lawler, Schramm, Werner.

\section*{Continuum space-filling SLE path}


Picture by Jason Miller.

Similar construction with circle packings, also related to conformal maps.


Picture by Jason Miller, packed with Ken Stephenson's CirclePack.

\title{
4. DEFINING THE MULTIPOINT FUNCTIONS OF CONFORMAL FIELD THEORY
}

\section*{Polyakov measure}


STUDENT: How many ways to conformally embed a surface into the sphere?

\section*{Polyakov measure}


STUDENT: How many ways to conformally embed a surface into the sphere? INSTRUCTOR: If \(a, b, c\) are three distinct points on sphere, and \(e, f, g\) are three others (say north/south poles, fixed point on equator) there is a unique map taking \(a, b, c\) to \(e, f, g\). The Möbius group \(\operatorname{PSL}(2, \mathbb{C})\) of all conformal automorphisms is 6 -real-dimensional, has infinite-volume Haar measure.

\section*{Polyakov measure}


STUDENT: How many ways to conformally embed a surface into the sphere? INSTRUCTOR: If \(a, b, c\) are three distinct points on sphere, and \(e, f, g\) are three others (say north/south poles, fixed point on equator) there is a unique map taking \(a, b, c\) to \(e, f, g\). The Möbius group \(\operatorname{PSL}(2, \mathbb{C})\) of all conformal automorphisms is 6 -real-dimensional, has infinite-volume Haar measure. STUDENT: Can you somehow average over all possible embeddings?

\section*{Polyakov measure}

STUDENT: How many ways to conformally embed a surface into the sphere? INSTRUCTOR: If \(a, b, c\) are three distinct points on sphere, and \(e, f, g\) are three others (say north/south poles, fixed point on equator) there is a unique map taking \(a, b, c\) to \(e, f, g\). The Möbius group \(\operatorname{PSL}(2, \mathbb{C})\) of all conformal automorphisms is 6 -real-dimensional, has infinite-volume Haar measure. STUDENT: Can you somehow average over all possible embeddings? INSTRUCTOR: If \(F\) is any function of the embedded surface, write \(\langle F\rangle\) for expectation w.r.t. to Haar-measure-embedded LQG sphere. Equivalently: \(F\) is function of \(\phi\) where \(\phi\) is zero-mean GFF on sphere, plus constant chosen from infinite measure \(e^{-2 Q x} d x\).

\section*{Polyakov measure}

STUDENT: How many ways to conformally embed a surface into the sphere? INSTRUCTOR: If \(a, b, c\) are three distinct points on sphere, and \(e, f, g\) are three others (say north/south poles, fixed point on equator) there is a unique map taking \(a, b, c\) to \(e, f, g\). The Möbius group \(\operatorname{PSL}(2, \mathbb{C})\) of all conformal automorphisms is 6 -real-dimensional, has infinite-volume Haar measure. STUDENT: Can you somehow average over all possible embeddings? INSTRUCTOR: If \(F\) is any function of the embedded surface, write \(\langle F\rangle\) for expectation w.r.t. to Haar-measure-embedded LQG sphere. Equivalently: \(F\) is function of \(\phi\) where \(\phi\) is zero-mean GFF on sphere, plus constant chosen from infinite measure \(e^{-2 Q x} d x\).
STUDENT: How do you define expectation of \(F\) w.r.t. an infinite measure?

\section*{Polyakov measure}

STUDENT: How many ways to conformally embed a surface into the sphere? INSTRUCTOR: If \(a, b, c\) are three distinct points on sphere, and \(e, f, g\) are three others (say north/south poles, fixed point on equator) there is a unique map taking \(a, b, c\) to \(e, f, g\). The Möbius group \(\operatorname{PSL}(2, \mathbb{C})\) of all conformal automorphisms is 6 -real-dimensional, has infinite-volume Haar measure. STUDENT: Can you somehow average over all possible embeddings? INSTRUCTOR: If \(F\) is any function of the embedded surface, write \(\langle F\rangle\) for expectation w.r.t. to Haar-measure-embedded LQG sphere. Equivalently: \(F\) is function of \(\phi\) where \(\phi\) is zero-mean GFF on sphere, plus constant chosen from infinite measure \(e^{-2 Q x} d x\).
STUDENT: How do you define expectation of \(F\) w.r.t. an infinite measure? INSTRUCTOR: Just integrate \(F\) w.r.t. the infinite measure.

\section*{Polyakov measure}

STUDENT: How many ways to conformally embed a surface into the sphere? INSTRUCTOR: If \(a, b, c\) are three distinct points on sphere, and \(e, f, g\) are three others (say north/south poles, fixed point on equator) there is a unique map taking \(a, b, c\) to \(e, f, g\). The Möbius group \(\operatorname{PSL}(2, \mathbb{C})\) of all conformal automorphisms is 6 -real-dimensional, has infinite-volume Haar measure. STUDENT: Can you somehow average over all possible embeddings? INSTRUCTOR: If \(F\) is any function of the embedded surface, write \(\langle F\rangle\) for expectation w.r.t. to Haar-measure-embedded LQG sphere. Equivalently: \(F\) is function of \(\phi\) where \(\phi\) is zero-mean GFF on sphere, plus constant chosen from infinite measure \(e^{-2 Q x} d x\).
STUDENT: How do you define expectation of \(F\) w.r.t. an infinite measure? INSTRUCTOR: Just integrate \(F\) w.r.t. the infinite measure.
STUDENT: Got it. Can you show me what all these embeddings look like?

\section*{Liouville conformal field theory}

STUDENT: So suppose \(F\) is "the amount of surface area parameterized by \(A\) " where \(A\) is a fixed ball (the Arctic Circle say). What would \(\langle F\rangle\) be?

\section*{Liouville conformal field theory}

STUDENT: So suppose \(F\) is "the amount of surface area parameterized by \(A\) " where \(A\) is a fixed ball (the Arctic Circle say). What would \(\langle F\rangle\) be? INSTRUCTOR: Infinity. You have an infinite measure on the space of embeddings: the measure of the embeddings that assign most of the mass to the Arctic circle is infinite.

\section*{Liouville conformal field theory}

STUDENT: So suppose \(F\) is "the amount of surface area parameterized by \(A\) " where \(A\) is a fixed ball (the Arctic Circle say). What would \(\langle F\rangle\) be? INSTRUCTOR: Infinity. You have an infinite measure on the space of embeddings: the measure of the embeddings that assign most of the mass to the Arctic circle is infinite.
STUDENT: How about a product? Say, area parameterized by Finland times area parameterized by Bolivia times area parameterized by Mongolia?...

\section*{Liouville conformal field theory}

STUDENT: So suppose \(F\) is "the amount of surface area parameterized by \(A^{\prime \prime}\) where \(A\) is a fixed ball (the Arctic Circle say). What would \(\langle F\rangle\) be? INSTRUCTOR: Infinity. You have an infinite measure on the space of embeddings: the measure of the embeddings that assign most of the mass to the Arctic circle is infinite.
STUDENT: How about a product? Say, area parameterized by Finland times area parameterized by Bolivia times area parameterized by Mongolia?... INSTRUCTOR: Now you're talking. Yes, there are "relatively many" embeddings that assign a macroscopic mass to one or two of those countries, but "relatively few" assigning macroscopic mass to all three. So the expected "product of areas" will be finite in this case. More generally take three or more disjoint \(A_{i}\). Consider the product of their areas: \(\left\langle\prod_{i} \int_{A_{i}} e^{\alpha_{i} \phi_{i}\left(x_{i}\right)} d x_{i}\right\rangle\) where \(\alpha_{i}=\gamma\). You can pull the integral outside the expectation and write this as \(\int_{\Pi A_{i}}\left\langle\prod e^{\alpha_{i} \phi\left(x_{i}\right)}\right\rangle \prod d x_{i}\). Integral of "multipoint function" \(\left\langle\prod e^{\alpha_{i} \phi\left(x_{i}\right)}\right\rangle\). STUDENT: What if I want a product of areas of balls, lengths of curves, fractal measures of fractal sets?...

\section*{Liouville conformal field theory}

STUDENT: So suppose \(F\) is "the amount of surface area parameterized by \(A^{\prime \prime}\) where \(A\) is a fixed ball (the Arctic Circle say). What would \(\langle F\rangle\) be? INSTRUCTOR: Infinity. You have an infinite measure on the space of embeddings: the measure of the embeddings that assign most of the mass to the Arctic circle is infinite.
STUDENT: How about a product? Say, area parameterized by Finland times area parameterized by Bolivia times area parameterized by Mongolia?... INSTRUCTOR: Now you're talking. Yes, there are "relatively many" embeddings that assign a macroscopic mass to one or two of those countries, but "relatively few" assigning macroscopic mass to all three. So the expected "product of areas" will be finite in this case. More generally take three or more disjoint \(A_{i}\). Consider the product of their areas: \(\left\langle\prod_{i} \int_{A_{i}} e^{\alpha_{i} \phi_{i}\left(x_{i}\right)} d x_{i}\right\rangle\) where \(\alpha_{i}=\gamma\). You can pull the integral outside the expectation and write this as \(\int_{\Pi A_{i}}\left\langle\prod e^{\alpha_{i} \phi\left(x_{i}\right)}\right\rangle \prod d x_{i}\). Integral of "multipoint function" \(\left\langle\prod e^{\alpha_{i} \phi\left(x_{i}\right)}\right\rangle\). STUDENT: What if I want a product of areas of balls, lengths of curves, fractal measures of fractal sets?...
INSTRUCTOR: Use similar multipoint functions but let \(\alpha_{i}\) be different.

\section*{Liouville conformal field theory}

STUDENT: Are these multipoint functions easy to compute?

\section*{Liouville conformal field theory}

STUDENT: Are these multipoint functions easy to compute?
INSTRUCTOR: Ha! If \(\phi\) were just a GFF then making formal sense of \(\left\langle\prod e^{\alpha_{i} \phi\left(x_{i}\right)}\right\rangle\) would be easy. But once we fix the surface area to be one (or weight by its exponential) we get a difficult non-Gaussian integral. This problem inspired a whole subject called conformal field theory and its solution uses lots of amazing work (Belavin, Polyakov, Zamolodchikov brothers, David, Dorn, Teischner, Kupiainen, Guillarmou, Rhodes, Vargas, etc.) Huge subject with myriad ties to physics-quantum field theory, string theory, 2D statistical physics, etc. See Vargas in Quanta video https://youtu.be/9uASADiYe_8?t=440.

\section*{Connections and keywords}


Thanks to co-authors and students: Tom Alberts, Morris Ang, Nathanaël Berestycki, Manan Bhatia, Bertrand Duplantier, Ewain Gwynne, Nina Holden, Richard Kenyon, Sungwook Kim, Greg Lawler, Asad Lodhia, Oren Louidor, Jason Miller, Andrei Okounkov, Minjae Park, Yuval Peres, Joshua Pfeffer, Rémi Rhodes, Oded Schramm, Nike Sun, Xin Sun, Vincent Vargas, Sam Watson, Menglu Wang, Wendelin Werner, David Wilson, Catherine Wolfram, Hao Wu and Pu Yu.


Some 2D models remain mysterious: Diffusion Limited Aggregation (DLA). Witten-Sander 1981.


DLA in nature: "A DLA cluster grown from a copper sulfate solution in an electrodeposition cell" (from Wikipedia)


DLA on a \(\sqrt{2}\)-LQG (picture by Jason Miller) is suprisingly more tractable.


THANKS to those who helped improve the ICM notes: Tom Alberts, Morris Ang, Nathanael Berestycki, Olivier Bernardi, Sky Cao, Nicolas Curien, Bertrand Duplantier, Ewain Gwynne, Jean-François Le Gall, Grégory Miermont, Jason Miller, Ron Nissim, Minjae Park, Guillaume Remy, Rémi Rhodes, Steffen Rohde, Stanislav Smirnov, Yilin Wang and Wendelin Werner.

THANKS to the organizers.
THANKS to many anonymous referees.

\section*{And thank you for listening!}


BONUS SLIDE: Exponential crochet by Tonya Khovanova. Amount of yarn needed grows like exponential of diameter \(d\). For random planar map (approximatiing Brownian surface) yarn needed grows like \(d^{4}\). Either way growth exceeds \(d^{3}\) so there will be lots of compressing or stretching when \(d\) is large. This explains why it is hard to construct "nice" 3D embeddings of random triangulations when the number of triangles is too large.


BONUS SLIDE: Finite-area surfaces embedded in dimension 3 want to be "tree like."' But if you start with a rhombic piece of triangular lattice, fix the boundary values, and let the rest of the surface evolve by Glauber dynamics, you start to get a minimal spanning surface decorated by "folded up trees" that dance around and merge. Related to Wilson loop expectations for Yang-Mills? Surfaces traced by Chatterjee's string trajectories? See forthcoming work with Park, Pfeffer, Yu about Wilson loop expectations in 2D and flat surface sums/integrals.```

