
Introduction: SLE and CLE
Gaussian free field

Liouville quantum gravity
Zippers and necklaces

How do you divide your (two dimensional) time?

SLE, CLE, the GFF and
Liouville quantum gravity zippers/necklaces,

and also congratulations to Stas!

Scott Sheffield

MIT

ICM 2010, August 26
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Why study the Schramm-Loewner evolution?

I It gives a universal description of critical two-dimensional
statistical mechanics.

I It has deep connections to conformal field theory and other
areas of particle physics.

I It has played a role in two recent Fields Medals.

I It is a safe way to have fun with stochastic calculus (without
causing a financial meltdown).

I It may help you naturally “divide time” into manageable
pieces (particularly if you are a Liouville quantum gravity
string, and by “time” you mean the intrinsic Riemannian
surface parameterizing your trajectory).
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Schramm-Loewner evolution (SLE)

Given a simply connected planar domain D with boundary points a
and b and a parameter κ ∈ [0,∞), the Schramm-Loewner
evolution SLEκ is a random path in D from a to b.

b

a

η

D

The parameter κ roughly indicates how “windy” the path is.
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CONFORMAL INVARIANCE

b

a

η

D

φ

D̃ φ ◦ η

φ(a)

φ(b)

If φ conformally maps D to D̃ and η is an SLEκ from a to b in D,
then φ ◦ η is an SLEκ from φ(a) to φ(b) in D̃.
SLE and Liouville quantum gravity: ICM 2010
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MARKOV PROPERTY

b

a

η

D

b

D

Given η up to a
stopping time t...

law of remainder is SLE in
D \ η[0, t] from η(t) to b.

η(t)
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Schramm-Loewner evolution (SLE)

I THEOREM [Oded Schramm]: Conformal invariance and
the Markov property completely determine the law of SLE.

I VERY IMPORTANT: by Riemann uniformization, SLE can
be defined on any simply connected Riemannian surface with
boundary, not just a planar domain. (The same will be true of
CLE, to be defined later.)
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David Xianfeng Gu’s conformal map images
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SLE phases [Rohde, Schramm]

κ ≤ 4 κ ∈ (4, 8) κ ≥ 8

SLE and Liouville quantum gravity: ICM 2010
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What about other interfaces? The collection of loops?
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I Given a simply connected domain D, κ ∈ (8/3, 8] . . .

I the conformal loop ensemble CLEκ is a random collection
of countably many non-nested loops in D, each of which looks
locally like SLEκ, finitely many above given diameter.

I CONFORMAL INVARIANCE: If φ conformally maps D to
D̃ then the image of a CLE in D is a CLE in D̃.
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I MARKOV PROPERTY: Fix a set A (with D \ A simply
connected). Given all the loops that hit A, the conditional law
of the remaining loops is that of a CLE in the remaining
domain.

I THEOREM [S, Wendelin Werner]: Conformal invariance
and the Markov property determine the law of a simple-loop
CLE, up to the parameter κ ∈ (8/3, 4].

SLE and Liouville quantum gravity: ICM 2010
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CLE References

I SLEs as boundaries of clusters of Brownian loops, CRM
[Werner]

I Exploration trees and conformal loop ensembles, Duke [S]

I Conformal radii for conformal loop ensembles, CMP
[Schramm, S, Wilson]

I Conformal loop ensembles: The Markovian
characterization, arXiv [S, Werner]

I Conformal loop ensembles: Construction via loop-soups,
arXiv [S, Werner]

SLE and Liouville quantum gravity: ICM 2010
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Smirnov’s theorems

I Percolation interfaces scale to SLE6/CLE6 (plus Camia,
Newman)

I Ising model interfaces scale to SLE3/CLE3 (spin clusters)
and SLE16/3/CLE16/3 (FK-clusters) (plus Smirnov’s
co-authors: Chelkak, Hongler, Kempainnen)

I Philosophy: percolation and Ising models are the canonical
simplest representatives of their “universality classes.”
Insights into these models are insights into the universe.

I Proofs: establish conformal invariance using new “holomorphic
martingale observables” and notions of discrete analyticity.

SLE and Liouville quantum gravity: ICM 2010
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Other SLE results

I Thm[Greg Lawler, Oded Schramm, Wendelin Werner]:
Loop erased random walk scales to SLE2 and boundary of
uniform spanning tree boundary scales to SLE8.

I Thm[Greg Lawler, Oded Schramm, Wendelin Werner]:
Boundary of planar Brownian motion looks like SLE8/3

I Thm[Oded Schramm, S]: Harmonic explorer, level sets of
Gaussian free field scale to SLE4.
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The discrete Gaussian free field

Let f and g be real functions defined on the vertices of a planar graph
Λ. The Dirichlet inner product of f and g is given by

(f, g)∇ =
∑

x∼y

(f(x)− f(y)) (g(x)− g(y)) .

The value H(f) = (f, f)∇ is called the Dirichlet energy of f .
Fix a function f0 on boundary vertices of Λ. The set of functions f
that agree with f0 is isomorphic to Rn, where n is the number of
interior vertices. The discrete Gaussian free field is a random
element of this space with probability density proportional to e−H(f)/2.



Discrete GFF on 20× 20 grid, zero boundary
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The continuum Gaussian free field

is a “standard Gaussian” on an infinite dimensional Hilbert space.
Given a planar domain D, let H(D) be the Hilbert space closure of the
set of smooth, compactly supported functions on D under the
conformally invariant Dirichlet inner product

(f1, f2)∇ =

∫

D

(∇f1 · ∇f2)dxdy.

The GFF is the formal sum h =
∑
αifi, where the fi are an

orthonormal basis for H and the αi are i.i.d. Gaussians. The sum does
not converge point-wise, but h can be defined as a random
distribution—inner products (h, φ) are well defined whenever φ is
sufficiently smooth.



Some DGFF properties:

Zero boundary conditions: The Dirichlet form (f, f)∇ is an inner
product on the space of functions with zero boundary, and the DGFF
is a standard Gaussian on this space.

Other boundary conditions: DGFF with boundary conditions f0 is
the same as DGFF with zero boundary conditions plus a deterministic
function, which is the (discrete) harmonic interpolation of f0 to Λ.

Markov property: Given the values of f on the boundary of a
subgraph Λ′ of Λ, the values of f on the remainder of Λ′ have the law
of a DGFF on Λ′, with boundary condition given by the observed
values of f on ∂Λ′.





Scaling limit of zero-height contour line

Theorem (Schramm, S): If initial boundary heights are λ on one
boundary arc and −λ on the complementary arc, where λ is the
constant

√
π
8 , then the scaling limit of the zero-height interface (as the

mesh size tends to zero) is SLE4.

If the initial boundary heights are instead −(1 + a)λ and (1 + b)λ, then
as the mesh gets finer, the laws of the random paths described above
converge to the law of SLE4,a,b.



DGFF with ±λ boundary conditions
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Expectations given values along interface
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Expectations given interface, ±3λ boundary
conditions
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Zero contour lines



Introduction: SLE and CLE
Gaussian free field

Liouville quantum gravity
Zippers and necklaces

GFF References

I The harmonic explorer and its convergence to SLE(4), Ann.
Prob. [Schramm, S]

I Local sets of the Gaussian free field, Parts I,II, and III, Online
lecture series: www.fields.utoronto.ca/audio/05-06 [S]

I Contour lines of the two-dimensional discrete Gaussian
free field, Acta Math [Schramm, S]

I A contour line of the continuum Gaussian free field,
arXiv [Schramm, S]

SLE and Liouville quantum gravity: ICM 2010
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“There are methods and formulae in science, which serve as master-
keys to many apparently different problems. The resources of such things
have to be refilled from time to time. In my opinion at the present time
we have to develop an art of handling sums over random surfaces. These
sums replace the old-fashioned (and extremely useful) sums over random
paths. The replacement is necessary, because today gauge invariance
plays the central role in physics. Elementary excitations in gauge theories
are formed by the flux lines (closed in the absence of charges) and the
time development of these lines forms the world surfaces. All transition
amplitude are given by the sums over all possible surfaces with fixed
boundary.”

A.M. Polyakov, Moscow 1981
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How to construct a random 2D manifold?

I Discrete approach: Glue together unit squares or unit
triangles in a random fashion. (Random quadrangulations,
random triangulations, random planar maps, random matrix
models.)

I Continuum approach: Use conformal maps to reduce to a
problem of constructing a random real-valued function on a
planar domain or a sphere. Using the Gaussian free field for
the random function yields (critical) Liouville quantum gravity.

SLE and Liouville quantum gravity: ICM 2010
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Discrete construction: gluing squares

SLE and Liouville quantum gravity: ICM 2010
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Discrete uniformizing maps

a

b

φ

φ(b) = ∞

φ(a) = 0

Planar map with one-chord-wired spanning tree (solid edges), plus
image under conformal map to H (sketch).
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How about the continuum construction? Defining Liouville
quantum gravity?

SLE and Liouville quantum gravity: ICM 2010



Constructing the random metric

Let hε(z) denote the mean value of h on the circle of radius ε centered
at z. This is almost surely a locally Hölder continuous function of (ε, z)
on (0,∞)×D. For each fixed ε, consider the surface Mε parameterized
by D with metric eγhε(z)(dx2 + dy2).

We define M = limε→0 Mε, but what does that mean?

PROPOSITION: Fix γ ∈ [0, 2) and define h, D, and µε as above.
Then it is almost surely the case that as ε→ 0 along powers of two, the
measures µε := εγ

2/2eγhε(z)dz converge weakly to a non-trivial limiting
measure, which we denote by µ = µh = eγh(z)dz.



Area/4096 square decomposition of eγhd2z for γ = 0



Area/4096 square decomposition of eγhd2z for γ = 1/2



Area/4096 square decomposition of eγhd2z for γ = 1



Area/4096 square decomposition of eγhd2z for γ = 2



Area/4096 square decomposition of eγhd2z for γ = 10
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Knizhnik-Polyakov-Zamolodchikov (KPZ) Formula

I Number of size-δ Euclidean squares hit by fractal typically
scales like power of δ, related to fractal dimension.

I In this case, number of quantum δ diadic squares hit scales
like different power of δ.

I Exponents are related by a deterministic (but γ-dependent)
formula called the KPZ formula.

I Quantum exponent heuristically describes corresponding
discrete models.

I Derived by KPZ in 1988, first compelling evidence of
relationship between discrete and continuous models.

I Recently proved rigorously [Duplantier, S].

SLE and Liouville quantum gravity: ICM 2010
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Changing coordinates

I We could also parameterize the same surface with a different
domain D̃.

I Suppose ψD̃ → D is a conformal map.

I Write h̃ for the distribution on D̃ given by h ◦ ψ + Q log |ψ′|
where Q := 2

γ + γ
2 .

I Then µh is almost surely the image under ψ of the measure
µh̃. That is, µh̃(A) = µh(ψ(A)) for A ⊂ D̃.

I Similarly, the boundary length νh is almost surely the image
under ψ of the measure νh̃.

SLE and Liouville quantum gravity: ICM 2010
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domain D̃.

I Suppose ψD̃ → D is a conformal map.

I Write h̃ for the distribution on D̃ given by h ◦ ψ + Q log |ψ′|
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Defining quantum surfaces

I DEFINITION: A quantum surface is an equivalence class of
pairs (D, h) under the equivalence transformations
(D, h)→ (ψ−1D, h ◦ ψ + Q log |ψ′|) = (D̃, h̃).

I Area, boundary length, and conformal structure are well
defined for such surfaces.
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Liouville quantum gravity References

I Liouville quantum gravity and KPZ, arXiv [Duplantier, S]

I Duality and KPZ in Liouville quantum gravity, PRL
[Duplantier, S]

I Conformal weldings of random surfaces: SLE and the
quantum gravity zipper, Online draft:
pims2010.web.officelive.com/Coursematerials.aspx [S]

I Schramm-Loewner evolution and Liouville quantum gravity, In
preparation [Duplantier, S]
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Zipper/necklace stationarity: setup

I Fix κ > 0, κ 6= 4, and take γ = min{√κ,
√

16/κ}. Let
h = h0 + h̃ where h0 = 2√

κ
log(z) and h̃ is an instance of the

free boundary GFF on the complex upper half plane H.

I Then (H, h) is a random quantum surface.

I Choose (independently of h) an SLEκ path η from 0 to ∞ in
H.

I This produces a quantum surface with two special boundary
points 0 and ∞ and a path connecting them.
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Zipper/necklace stationarity: theorem

I Take (H, h) and η as above and cut H along the path η up to
some fixed time t.

I THEOREM [S]: The unbounded quantum surface that
remains (after the cutting) has the same law as original law of
(H, h).
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Quantum gravity zipper

ηT

fT
h

h ◦ fT +Q log |f ′T |

The map ft “zips together” the positive and negative real axes,
while f −1t “unzips” the path.
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Conformal welding theorem

I Theorem [S] The quantum lengths, as measured on the left
and right sides of η agree.

I In other words, the embedding of the two quantum surfaces
(one on each side of γ) into H is a conformal welding of these
surfaces.

I Theorem[consequence of result of Jones-Smirnov]:
Homeomorphism between negative real axis and positive real
axis (indentifying points of equal quantum length from 0)
determines curve η obtained by zipping up.
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Stationarity and matching quantum lengths

η

h

I Sketch of η with marks spaced at intervals of equal νh length.

I Semicircular dots on R are “zipped together” by ft , then
pulled apart (unzipped) by f −1t .

I The random pair (h, η) is stationary with respect to zipping
up or down by a unit of (capacity) time.
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Quantum gravity necklaces

ηT

fT
h

h ◦ fT +Q log |f ′T |

Going from right to left, we lose a “chunk” of the quantum surface
if κ > 4. Now if we take space-filling SLE and
modify/reparameterize so that all successive chunks have unit
quantum area. . .
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Quantum gravity necklaces

then we can obtain a sequence of i.i.d. unit-area necklaces.
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Sequences of necklaces

I The independence result suggests that there might be a way
to divide discrete random surfaces into discrete necklaces that
are (at least asymptotically) independent of one another.

I THEOREM[S, in preparation] Indeed there is.

I It turns out that FK-cluster-weighted planar maps are in
bijection with inventory trajectories at a LIFO retailer with
two products (hamburger, cheeseburgers) and three customer
types (hamburger eaters, cheeseburger eaters,
freshest-available-burger eaters). Similar result for
tree-weighted planar map is classical [Mullin, 1967].

I The LIFO inventory model admits a probabilistic analysis.
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Scaling limits

I The necklace decomposition theorems offer strong evidence
that the discrete models converge to the continuum ones.

I They actually yield a proof that the convergence holds in
particular topology (the “driving function topology”).
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Thanks to Oded Schramm (1961-2008), inventor of SLE,

and thank you for coming!
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