BASIC DISCRETE RANDOM VARIABLES X (using ¢ =1—p)

. Binomial (n,p): px(k) = (})p"¢" " and E[X] = np and Var[X] = npq.

. Poisson \: px (k) = e *\¥/k! and E[X] = A and Var[X] = \.

. Geometric p: px(k) = ¢"*'p and E[X] = 1/p and Var[X] = q/p>.

. Negative binomial (n,p): px(k) = (:j)p"qk*", E[X] = n/p, Var[X] = nq/p>.
BASIC CONTINUOUS RANDOM VARIABLES X

. Uniform on [a,b]: fx(k) =1/(b—a) on [a,b] and E[X] = (a+b)/2 and Var[X] = (b — a)?/12.

. Normal (pu,0?): fx(k) = \%e—(x_“)z/%? and E[X] = p and Var[X] = o2.
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. Exponential \: fx(z) = Ae™* (on [0,00)) and E[X] = 1/) and Var[X] = 1/A%.

. Gamma (n,\): fx(z) = ﬁe*)‘x()\x)"*l (on [0,00)) and E[X] = n/A and Var[X] = n/)\2.

. Cauchy: fx(x)= and both E[X] and Var[X] are undefined.
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. Beta (a,b): fx(x)= % on [0,1] and E[X] =a/(a + b).

MOMENT GENERATING / CHARACTERISTIC FUNCTIONS

. Discrete: Mx(t) = E[e!*] =Y px(z)e!® and ¢x(t) = E[e!™X] = px(x)ei®.

. Continuous: Mx(t) = E[e'*] = [ fx(z)e"dz and ¢x (1) = E[e"™*] = [ fx(z)e"*dx.
. If X and Y are independent: Mx y(t) = Mx(t)My(t) and ¢x1v(t) = dx(t)dy(t).

. Affine transformations: M,x,;(t) = e® Mx (at) and ¢ox4s(t) = o x (at)

. Some special cases: if X is normal (0, 1), complete-the-square trick gives Mx (t) = et?/2 and
dx(t) = e /2 If X is Poisson A get “double exponential” My (t) = eM¢~D and ¢y (t) = e D).

WHY WE REMEMBER: BASIC DISCRETE RANDOM VARIABLES

. Binomial (n,p): sequence of n coins, each heads with probability p, have (Z) ways to choose a set
of k to be heads; have p*(1 — p)"* chance for each choice. If n = 1 then X € {0,1} so

E[X] = E[X?] = p, and Var[X] = E[X?] — E[X]? = p — p? = pq. Use expectation/variance
additivity (for independent coins) for general n.

. Poisson \: px (k) is e™ times kth term in Taylor expansion of e*. Take n very large and let Y be
# heads in n tosses of coin with p = A/n. Then E[Y] =np = X and Var(Y') = npg =~ np = \. Law
of Y tends to law of X as n — oo, so not surprising that E[X| = Var[X] = \.

. Geometric p: Probability to have no heads in first k — 1 tosses and heads in kth toss is (1 —p)*~1p.

If you are repeatedly tossing coin forever, makes intuitive sense that if you have (in expectation) p
heads per toss, then you should need (in expectation) 1/p tosses to get a heads. Variance formula
requires calculation, but not surprising that Var(X) a 1/p? when p is small (when p is small X is
kind like of exponential random variable with p = ) and Var(X) ~ 0 when ¢ is small.

. Negative binomial (n,p): If you want nth heads to be on the kth toss then you have to have
n — 1 heads during first k — 1 tosses, and then a heads on the kth toss. Expectations and variance
are n times those for geometric (since were’re summing n independent geometric random variables).



WHY WE REMEMBER: BASIC CONTINUUM RANDOM VARIABLES

. Uniform on [a,b]: Total integral is one, so density is 1/(b — a) on [a,b]. E[X] is midpoint
(a+0b)/2. When a =0 and b = 1, w know E[X?] = fol r?dz = 1/3, so that

Var(X) = 1/3 —1/4 = 12. Stretching out random variable by (b — a) multiplies variance by (b— a)?.
1 2?2
V2r
multiplicative constant) its own Fourier transform. The fact that ffooo e~ /2dx = /27 came from
a cool and hopefully memorable trick involving passing to two dimensions and using polar
coordinates. Once one knows the o = 1, 4 = 0 case, general case comes from stretching/squashing
the distribution by a factor of ¢ and then translating it by u.

. Normal (p,0?): when o0 =1 and p = 0 we have fx(z) = . The function e~**/2 is (up to

. Exponential A: Suppose A = 1. Then fx(z) =€~ on [0,00). Remember the integration by parts
induction that proves [;° e *2™ =nl. So E[X]=1!=1 and E[X? = 2! = 2 so that

Var[X]| =2 — 1 = 1. We think of X as rate (“number of buses per time unit”) so replacing 1 by A
multiplies wait time by 1/\, which leads to F[X] = 1/ and Var(X) = 1/)2.

. Gamma (n,\): Again, focus on the A = 1 case. Then fx is just e”*2"~! times the appropriate
constant. Since X represents time until nth bus, expectation and variance should be n (by
additivity of variance and expectation). If we switch to general \, we stretch and squash fx (and
adjust expecation and variance accordingly).

. Cauchy: If you remember that 1/(1 + 22) is the derivative of arctangent, you can see why this
corresponds to the spinning flashlight story and where the 1/7 factor comes from. Asymptotic 1/x
decay rate is why [ fx(z)dx is finite but [*_ fx(x)zdz and [%_ fx(z)z?dz diverge.
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. Beta (a,b): fx(x) is (up to a constant factor) the probability (as a function of x) that you see

a — 1 heads and b — 1 tails when you toss a + b — 2 p-coins with p = x. So makes sense that if
Bayesian prior for p is uniform then Bayesian posterior (after seeing a — 1 heads and b — 1 tails)
should be proportional to this. The constant B(a,b) is by definition what makes the total integral
one. Expectation formula (which you computed on pset) suggests rough intuition: if you have
uniform prior for fraction of people who like new restaurant, and then (a — 1) people say they do
and (b — 1) say they don’t, your revised expectation for fraction who like restaurant is ;9. (You

might have guessed %,

a—1=0o0rb—-1=0.)

but that is not correct — and you can see why it would be wrong if



