
Correlation, regression, and the Kelly strategy

18.600 Problem Set 8, due April 22

Welcome to your eighth 18.600 problem set! Let’s think about correlations. Given
a population of people who each have two attributes, like ACT and SAT scores, you can
choose a member at random and interpret the attributes of the person you choose as random
variables. These variables have a correlation coefficient, which you’d expect to be high for
ACT and SAT scores (maybe about .87, per some site I just googled).

Correlations inform beliefs. The strong observed correlations between cigarettes and
early death (and many specific ailments like lung cancer) are a huge part of the of evidence
that cigarettes are unhealthy. The discovery of the unhealthiness of smoking has saved
millions of lives — a win for observational statistics. (Also an embarrassment, given that
it took until the second half of 20th century for the case to be made persuasively.)

On the other hand, we all know the correlation does not imply causation cliché. The
“spurious correlation” website tylervigen.com illustrates this with strong correlations be-
tween seemingly unrelated annual statistics like sociology doctorates and space launches,
or pool drownings and Nicolas Cage films. The 2012 NEJM article Chocolate consump-
tion, Cognitive function, and Nobel Laureates (which presents a real country-to-country
correlation between chocolate consumption and Nobel prize winning) is a clever parody of
the way observed correlations are used in medicine (it’s only three pages; look it up). It
earnestly walks the reader through causal hypotheses (brain-boosting flavanoids), reverse
causal hypotheses (chocolate consumed at Nobel prize celebrations) and common demoni-
nator hypotheses (geography, climate, socioeconomics), mostly dismissing the latter.

Alongside correlation does not imply causation one might add correlation does not imply
correlation, or more precisely, reported correlation in some data set does not imply correla-
tion in the larger population, or correlation that will persist in time. Google study “linked
to” and scroll through a few pages of hits. Some sound fairly plausible (“walking/cycling
to work linked to lower body fat”) but others raise eyebrows. Clicking through, you find
that sometimes the correlations are weak, the sample sizes small, the stories (at least at
first glance) far fetched. A news organization’s criteria for deciding which links to publicize
may differ from those a careful scientist would use to decide what to take seriously and/or
study further (e.g. with randomized trials). Reader beware.

This problem set will also feature discussion about the Kelly strategy, moment gener-
ating functions, regression lines, and a phenomenon called regression to the mean.

Please stop by my weekly office hours (2-249, Wednesday 3 to 5) for discussion.

A. FROM TEXTBOOK CHAPTER SEVEN:

1. Problem 51: The joint density of X and Y is given by f(x, y) = e−y

y , 0 < x < y,

0 < y <∞. Compute E[X3|Y = y].
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Remark: To prepare for the next problem, suppose that you discover a market
inefficiency in the form of a mispriced asset. Precisely, you discover an asset priced at $10
that has a p > 1/2 chance to go up to $11 over the next day or so (before reaching $9)
and a (1− p) < 1/2 chance to go down to $9 (before reaching $11). By buying r shares at
$10 and them selling when the price reaches $9 or $11, you have an opportunity to make a
bet that will win r dollars with probability p > 1/2 and lose r dollars with probability
(1− p). Let’s ignore transaction costs and bid-ask spread. (And assume that, unlike all
those people who merely think they can recognize market inefficiencies, you actually can.
Assume also that your wisdom was obtained legally — so no risk of an insider trading
conviction!) So now you effectively have an opportunity to bet r dollars on a p coin with
p > 1/2. The question is this: how much should you bet? In expectation you will make
pr + (1− p)(−r) = (2p− 1)r dollars off this bet, so to maximize your expected payoff, you
should bet as much as you possibly can. But is that really wise? If you repeatedly bet all
our money on p-coins, it might not be long before you lose everything. The Kelly strategy
(which comes from assuming utility is a logarithmic function of wealth — look it up)
states that instead of betting everything, you should bet a 2p− 1 fraction of your current
fortune. The next problem is a simple question about this strategy.

2. Problem 67: Consider a gambler who, at each gamble, either wins or loses her bet
with respective probabilities p and 1− p. A popular gambling system knkown as the
Kelly strategy is to always bet the fraction 2p− 1 of your current fortune when
p > 1/2. Compute the expected fortune after n gambles of a gambler who starts
with x units and employs the Kelly strategy.

Remark: The next problems will help solidify your understanding of moment generating
functions. These play a central role in large deviation theory, which in turn plays a central
role in information theory, data compression, and statistical physics. In this course, we
mostly use moment generating functions (and the closely related characteristic functions)
as tools for proving the central limit theorem and the weak law of large numbers.

3. Theoretical Exercise 48: If Y = aX + b, where a and b are constants, express the
moment generating function of Y in terms of the moment generating function of X.

4. Theoretical Exercise 52: Show how to compute Cov(X,Y ) from the joint moment
generating function of X and Y , i.e., from the function MX,Y (s, t) = E[esX+tY ].

B. Suppose that X and Y both have mean zero and variance one, so that
E[X2] = E[Y 2] = 1 and E[X] = E[Y ] = 0.

(a) Check that the correlation coefficient between X and Y is ρ = E[XY ].

(b) Let r be the value of the real number a for which E[(Y − aX)2] is minimal. Show
that r depends only on ρ and determine r as a function of ρ.
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(c) Check that whenever Z has finite variance and finite expectation, the real number b
that minimizes the quantity E[(Z − b)2] is b = E[Z].

(d) Conclude that the quantity E[(Y − aX − b)2] is minimized when a = r and b = 0.

Remark: We have shown that among all affine functions of X (i.e. all sums of the form
aX + b for real a and b) the one that best “approximates” Y in (in terms of minimizing
expected square difference) is rX. This function is commonly called the least squares
regression line for approximating Y (which we call a “dependent variable”) as a function
of X (the “independent variable”). If r = .1, it may seem odd that .1X is considered an
approximation for Y (when Y is the dependent variable) while .1Y is considered an
approximation for X (when X is the dependent variable). The lines y = .1x and x = .1y
are pretty different after all. But the lines are defined in different ways, and when |r| is
small, the correlation is small, so that neither line is an especially close approximation. If
r = 1 then ρ = 1 and both lines are the same (since X and Y are equal with probability
one in this case).

Remark: The above analysis can be easily generalized (by simply rescaling and
translating the (X,Y ) plane) to the case that X and Y have non-zero mean and variances
other than one. The subject known as regression analysis encompasses this generalization
along with further generalizations involving multiple dependent variables, as well as
settings where a larger collection of functions plays the role that affine functions played
for us. Regressions are ubiquitous in academic disciplines that use data. Given data in a
spreadsheet, you can compute and plot regression lines with the push of a button (google
spreadsheet regression; follow instructions). For a related but much more difficult setting,
imagine that I give you a set of pictures, and assign a number to each picture indicating
how closely it resembles a cat. If you had a nice way to approximate this function (from
the set of digitally encoded pictures to the set of numbers) you could program it into your
computer and maybe enable your computer to recognize cats. Statistics and “machine
learning” are hot topics these days, and may be part of your further coursework at MIT.

C. On Smoker Planet, each person decides at age 18, according to a fair coin toss,
whether or not to become a life long cigarette smoker. A person who does not become a
smoker will never smoke at all and will die at a random age, the expectation of which is
75 years, with a standard deviation of 10 years. If a person becomes a smoker, that
person will smoke exactly 20 cigarettes per day throughout life, and the expected age at
death will be 65 years, with a standard deviation of 10 years.

(a) On this planet, what is the correlation between number of cigarettes smoked per day
and life duration? Hint: let S ∈ {0, 20} be cigarettes smoked daily. Let L be life
duration. Set M = E[L|S] = 75− S/2 and N = L−M . Show E[MN ] = E[N ] = 0
by breaking expectation into two parts depending on M value. Deduce
Var(L) = Var(M +N) = Var(M) + Var(N). Compute E[N2] in two parts and find
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Var(N). Since M is a (negative slope) affine funtion of S, find ρ(S,L) = −ρ(M,L).
Try to find the latter. (Alternate hint: cite the Var(L) = Var(E[L|S]) +E[Var(L|S)]
identity from lecture to deduce Var(L) = Var(M +N) = Var(M) + Var(N) and
hence Cov(M,N) = 0 and hence Cov(L,M) = Var(M).)

On Bad Celery Planet, it turns out that (through some poorly understood mechanism)
celery is unhealthy. In fact, a single piecce of celery is as unhealthy as a single cigarette
on Smoker Planet. However, nobody eats 20 pieces a day for a lifetime. Everybody has a
little bit, in varying amounts throughout life. Here is how that works. Each year between
age 18 and age 58 a person tosses a fair coin to decide whether to be a celery eater that
year. If the coin comes up heads, that person will eat, on average, one piece of celery per
day for the entire year (mostly from company vegetable platters). Given that one
consumes celery for K of the possible 40 years (celery consumption after age 58 has no
effect, and everyone lives to be eat least 58) one expects to live until age 75−K/80, with
a standard deviation of 10 years. (So, indeed, eating 1 celery stick per day for the full 40
years is about 1/20 as harmful as smoking 20 cigarettes a day for a lifetime.)

(b) On this planet, what is the correlation between celery consumption (over the full 40
year period) and life duration? Hint: Write L for a person’s life duration and
M = E[L|K] = 75−K/80 and N = L−M . Note that ρ(K,L) = −ρ(M,L). Show
that M and N are uncorrelated, so Var(M +N) = Var(M) + Var(N). You’ll use
sums over cases as in previous part: e.g., E[N2] =

∑
k P [K = k]E[N2|K = k].

Remark: The answer to (b) is really a lot smaller than the answer to (a). So small that
it would be very hard to demonstrate this effect to the public without a really big sample
size. Moreover, even if you exhibited the effect in a large sample, people might reason as
follows: if those who eat more celery are statistically different from those who eat less
(more health conscious, more concentrated in certain regions, more prone to also eat
carrots and ranch dressing, etc.) the effects of these differences could easily swamp any
effects of the celery itself. One can try to “control” for obvious differences in some way
(e.g., with multi-variable regressions) but one cannot account for all of them. So even
after you convincingly demonstrate correlation, it may appear (to the educated public of
the planet) very unlikely that the health effects of celery are the actual cause. Unless
celery is linked more directly to a specific ailment (e.g., death by choking on celery) or
shown to be unhealthy in other ways (chemical properties, experiments on rats, etc.) the
people on Bad Celery Planet may never develop a persuasive case against celery. Of
course, in the real world, people worry that lots of products have mild carcinogenic effects:
big enough to matter, small enough to be hard to demonstrate. Some people hope that
“big data” will at least somewhat improve our ability to identify dangers.

D. Let X be a normal random variable with mean µ and variance σ21. Let Y be an
independent normal random variable with mean 0 and variance σ22. Write Z = X + Y .
Let Ỹ be an independent random variable with the same law as Y . Write Z̃ = X + Ỹ .
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(a) Compute the correlation coefficient ρ of Z̃ and Z.

(b) Compute E[X|Z] and E[Z̃|Z]. Express the answer in a simple form involving ρ.
Hint: consider case µ = 0 first and find fX,Z(x, z). You know FX(x) and fZ|X=x(z).
Alternate hint: if Xi are i.i.d. normal with variance σ2, mean 0, and n ≥ k then
argue by symmetry that E[

∑k
i=1Xi|

∑n
i=1Xi = z] = z(k/n). Write X =

∑k
i=1Xi

and Y =
∑n

k+1Xi. Fiddle with k, n, σ2 to handle the case that σ21/σ
2
2 is rational.

Note that E[Z̃|Z] is closer to E[Z̃] = E[Z] than Z is. This is a case of what is called
“regression to the mean.” Let’s tell a few stories about that. An entrant to a free throw
shooting competition has a skill level that we denote by X, which is randomly distributed
as a normal random variable with mean µ and variance 2. During the actual competition,
there is an independent luck factor that we denote by Y , which is a normal random
variable with variance 1 and mean zero. The entrant’s overall score is a Z = X + Y . If the
entrant participates in a second tournament, the new score will be Z̃ = X + Ỹ where Ỹ is
an independent luck factor with the same law as Y .

(c) Compute the standard deviation of Z. Given that Z is two standard deviations
above its expectation, how many standard deviations above its expectation do we
expect Z̃ to be?

Imagine that people in some large group are randomly assigned to teams of 16 people
each. Each person’s skill level is an i.i.d. Gaussian with mean 0 and standard deviation 1.
The team’s skill level is the sum of the individual skill levels. You can check that a team’s
skill level is a Gaussian random variable with mean 0 and standard deviation 4.

(d) Given that a team’s total skill level is 8 (two standard deviations above the mean for
teams) what do we expect the skill level of a randomly chosen team member to be?

Each drug generated by a lab has an “true effectiveness” which is a normal random
variable X with variance 1 and expectation 0. In a statistical trial, there is an
independent “due-to-luck effectivness” normal random variable Y with variance 1 and
expectation 0, and the “observed effectiveness” is Z = X + Y .

(e) If we are given that the observed effectiveness is 2, what would we expect the
observed effectiveness to be in a second independent study of the same drug?

Remark: The following is from the abstract of the Nosek reproducibility study (recall
Problem Set 3) which attempted to reproduce 100 published psychology experiments:
“The mean effect size (r) of the replication effects (Mr = 0.197, SD = 0.257) was half the
magnitude of the mean effect size of the original effects (Mr = 0.403, SD = 0.188),
representing a substantial decline.” The fact that the effect sizes in the attempted
replications were smaller those in the original studies is not surprising from a regression to
the mean point of view. Google Iorns reproducibility for analogous work on cancer.
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E. This problem will apply the “regression to the mean” ideas from the previous problem
to a toy model for university admissions. Let’s think about admissions at a (somewhat
arbitrarily chosen) group of five selective universities: Harvard, Stanford, MIT, Yale and
Princeton. For fall 2014, these universities all had (per usnews.com article I just looked
up) “yield rates” between 66 and 81 percent and class sizes between 1043 and 1654. If we
refer to an admission letter to one of these five universities as a golden ticket then in all
9570 golden tickets were issued and 7047 were used (i.e., a total of 7047 first year students
enrolled at these schools). This means there were 2523 unused golden tickets.

Who had these 2523 unused golden tickets? Somebody presumbly has a rough answer, but
let’s just speculate. One wild possibility is that all the unused tickets were held by 505
very lucky students (with 5 unused golden tickets each) who all crossed the Atlantic to
attend Oxford and Cambridge. If this were true, then none of the 7047 golden ticket users
would have an extra unused ticket. Another wild possibility is that exactly 2523 of the
7047 golden ticket users (about 35.8 percent) have exactly one unused ticket. In any case,
the fraction of golden ticket users with an unused ticket to spare is somewhere between 0
and .358, which implies that the overwhelming majority of these 7047 entering students
were accepted to the university they attend and to none of the other four. The
stereotypical “students who apply to all five, get accepted to most” are a small minority.
We would need more data to say more than that (where individuals apply, how many
apply early admission, how students decide between multiple offers, how admissions
criteria vary from place to place, etc.) So let’s move to an imaginary (and perhaps not
terribly similar) universe where the analysis is simpler. Then we’ll do a little math.

In Fancy College Country there are exactly five elite universities and 40,000 elite
applicants. All 40,000 applicants apply to all five universities. The intrinsic strength of an
applicant’s case is a normal random variable X with mean 0 and variance 1. When a
university reads the application, the university assigns it a score S = X + Y where Y is an
independent normal random variable with mean 0 and variance 1. Think of X as the
college-independent part of an application’s strength and Y as the college-dependent part
(perhaps reflecting the resonance of the student’s background with university-specific
goals, as well as the random mood of the admission team). Each student has one value X
but gets an independent Y value for each university. Each university admits all applicants
with scores above the 95th percentile in score distribution. Since S has variance 2, this
means they admit students whose scores exceed C = Φ−1(.95) ·

√
2 ≈ 1.6449 ·

√
2 ≈ 2.326

where Φ(a) = (2π)−1/2
∫ a
−∞ e

−x2/2dx. To be admitted a student’s score must exceed 2.326.
Each university expects to admit 5 percent of its applicants.

(a) Compute, as a function of x, the conditional probability that the student is
admitted to the first university in the list, given that the student’s X value is x. In
other words, compute the probability that Y > C − x.

(b) Let A(x) be the conditional probability that the student is admitted to at least one

6



university on the list, given that the student’s X value is x. Compute A(x) using Φ
and C as defined above.

(c) Argue that the overall probability that a student is admitted to at least one
university is given by

∫∞
−∞(1/

√
2π)e−x

2/2A(x)dx and that the chance to be rejected

by all universities is
∫∞
−∞(1/

√
2π)e−x

2/2(1−A(x))dx.

(d) Try to compute (c) numerically in a package like wolframalpha and report how it
goes. You might (I did) have to fiddle a bit to get it to work. Here’s how I did it:

1. To see how wolframalpha represents Φ(x) type in

Integrate[(1/Sqrt[2Pi]) E^(-y^2/2), {y,-Infinity, x}]

You get some expression involving erf, which is a close relative of Φ.

2. Click on that to get plaintext. Replace x with (2.326− x) to get

1/2 (1+erf((2.326-x)/sqrt(2)))

3. Put parentheses about this and raise it to fifth power (to get a wolframalpha
friendly expression for conditional chance to be rejected everywhere, given x),
multiply by fX(x) and integrate:

Integrate[(1/sqrt(2Pi)) E^(-x^2/2)

(1/2 (1+erf((2.326-x)/sqrt(2))))^5, {x,-Infinity, Infinity}]

(e) Briefly justify the following conclusions. Each student has a 0.166363 chance to be
accepted at least somewhere. The expected number of students admitted to at least
one university is about 6655. The expected class sizes are about 1331 at each school,
and each university has a typical yield rate of about .67.

Remark: If admission were completely random (each university takes a student with
probability .05 independently of X) then the applicants would have a 1− (.95)5 ≈ .2262
chance to get accepted to at least one university. We’d expect to see .2262 · 40000 ≈ 9048
students admited to at least one university, and the yield rate for each university would
be roughly .9048. If the selection process were completely determined by X (so that all
universities accept exactly the same 2000 students) then there would be only 2000
students admitted to at least one university and the yield rate would be .2 (with class
sizes of only 400). Our .67 lies between these extremes.

Remark: If some applicants applied to fewer than 5 universities (e.g., due to early
admissions) yield rates might be higher, since fewer admits would have multiple offers. If
the variance of Y were smaller, yields might be lower due to greater admission list overlap.
If some admits chose not to attend one of the 5 schools, that would also decrease yields.

7


