Conditional probability

18.600 Problem Set 3, due February 26
Welcome to your third 18.600 problem set! Conditional probability is

defined by P(A|B) = P(AB)/P(B), which implies
P(B)P(A|B) = P(AB) = P(A)P(B|A),

and dividing both sides by P(B) gives Bayes’ rule:
P(B|A)

P(A|B) = P(4) P
which we may view as either a boring tautology or (after spending a few
hours online reading about Bayesian epistemology, Bayesian statistics, etc.)
the universal recipe for revising a worldview in response to new information.
Bayes’ rule relates P(A) (our Bayesian prior) to P(A|B) (our Bayesian pos-
terior for A, once B is given). If we embrace the idea that our brains
have subjective probabilities for everything (existence of aliens, next year’s
interest rates, Sunday’s football scores) we can imagine that our minds con-
tinually use Bayes’ rule to update these numbers. Or least that they would
if we were clever enough to process all the information coming our way.

By way of illustration, here’s a fanciful example. Imagine that in a cer-
tain world, a normal person says 10° things per year, each of which has a
1075 chance (independently of all others) of being truly horrible. A truly
horrible person says 10° things, each of which has a 1072 chance (indepen-
dently of all others) of being truly horrible. Ten percent of the people in
this world are truly horrible. Suppose we meet someone on the bus and the
first thing that person says is truly horrible. Using Bayes’ rule, we conclude
that this is probably a truly horrible person.

Then we turn on cable television and see an unfamiliar politician saying
something truly horrible. Now we’re less confident. We don’t know how the
quote was selected. Perhaps the politician has made 10° recorded statements
and we are seeing the only truly horrible one. So we make the quote selection
mechanism part of our sample space and do a more complex calculation,
which might also factor in a belief that politicians are more (or less) likely
a priori to be truly horrible than bus riders.

Lawyers select evidence to influence how judges and jurors calculate
conditional probability given that evidence. Listeners try to take this into
account. They assess the probability that — given that a person is innocent
— there is still some collection of true facts such that conditioned on those
facts the person looks guilty. Real life Bayesian reasoning is complicated.

Please stop by my weekly office hours (2-249, Wednesday 3 to 5) for
discussion.



A. FROM TEXTBOOK CHAPTER THREE:

1.

Problem 26: Suppose that 5 percent of men and .25 percent of
women are color blind. A color-blind person is chosen at random.
What is the probability of this person being male? Assume that
there are an equal number of males and females. What if the
population consisted of twice as many males as females?

Problem 43: There are 3 coins in a box. One is a two-headed coin,
another is a fair coin, and the third is a biased coin that comes up
heads 75 percent of the time. When one of the 3 coins is selected at
random and flipped, it shows heads. What is the probability that it
was the two-headed coin?

Problem 47: An urn contains 5 white and 10 black balls. A fair die is
rolled and that number of balls is randomly chosen from the urn.
What is the probability that all of the balls selected are white? What
is the conditional probability that the die landed on 3 if all the balls
selected are white?

Theoretical Exercise 24: A round-robin tournament of n contestants
is a tournament in which each of the (g) pairs of contestants play
each other exactly once, with the outcome of any play being that one
of the contestants wins and the other loses. For a fixed integer k,

k < mn, a question of interest is whether it is possible that the
tournament outcome is such that, for every set of k players, there is a
player who beat each member of that set. Show that if
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then such an outcome is possible. Hint: Suppose that the results of
the games are independent and that each game is equally likely to be
won by either contestant. Number the (Z) sets of k contestants, and
let B; denote the event that no contestant beat all of the k players in

the ith set. Then use Boole’s inequality to bound P(UiBZ-).

B. Suppose that a fair coin is tossed infinitely many times, independently.
Let X; denote the outcome of the ith coin toss (an element of {H,T'}).
Compute the probability that:

1.

X; = H for all positive integers i.



2. The pattern HHTTHHTT occurs at some point in the sequence
X1, X0, X3,.. ..

C. Two unfair dice are tossed. Let p; j, for i and j in {1,2,3,4,5,6},
denote the probability that the first die comes up 7 and the second j.
Suppose that for any i and j in {1,2,3,4,5,6} the event that the first die
comes up % is independent of the event that the second die comes up j.
Show that this independence implies that, as a 6 by 6 matrix, p; ; has rank
one (i.e., show that there is some column of the matrix such that each of
the other five column vectors is a constant multiple of that one).

D. Suppose that the quantities P[A|X;], P[A|X32], ..., P[A|X}] are all
equal. Check that P[X;|A] is proportional to P[X;]. In other words, check
that the ratio P[X;|A]/P[X;] does not depend on i. (This requires no
assumptions about whether the X; are mutually exclusive.)

Remark: This can be viewed as a mathematical version of Occam’s razor.
We view A as an “observed” event and each X; as an event that might
“explain” A. What we showed is that if each X; “explains” A equally well
(i.e., P(A|X;) doesn’t depend on ) then the conditional probability of X;
given A is proportional to how likely X; was a a priori. For example,
suppose A is the event that there are certain noises in my attice, X is the
event that there are squirrels there, and X5 is the event that there are
noisy ghosts. I might say that P(X1|A4) >> P(X32|A) because

P(X;) >> P(X32). Note that after looking up online definitions of
“Occam’s razor” you might conclude that it refers to the above tautology
plus the common sense rule of thumb that P(X;) > P(X3) when X is
“simpler” than Xy or “requires fewer assumptions.”

E. On Cautious Science Planet, science is done as follows. First, a team of
wise and well informed experts concocts a hypothesis. Experience suggests
the hypotheses produced this way are correct ninety percent of the time, so
we write P(H) = .9 where H is the event that the hypothesis is true.
Before releasing these hypotheses to the public, scientists do an additional
experimental test (such as a clinical trial or a lab study). They decide in
advance what constitutes a “positive” outcome to the experiment. Let T’
be the event that the positive outcome occurs. The test is constructed so
that P(T|H) = .95 but P(T|H¢) = .05. The result is only announced to
the public if the test is positive. (Sometimes the test involves checking
whether an empirically observed quantity is “statistically significant.” The
quantity P(T'|H) is sometimes called the power of the test.)



(a) Compute P(H|T). This tells us what fraction of published findings
we expect to be correct.

(b) On Cautious Science Planet, results have to be replicated before they
are used in practice. If the first test is positive, a second test is done.
Write T for the event that the second test is positive, and assume the
second test is like the first test, so that P(T|HT) = .95 but
P(T|H°T) = .05. Compute the reproducibility rate P(T|T).

(¢) Compute P(H|TT). This tells us how reliable the replicated results
are. (Pretty reliable, it turns out—your answer should be close to 1.)

On Speculative Science Planet, science is done as follows. First creative
experts think of a hypothesis that would be rather surprising and
interesting if true. These hypotheses are actually correct only five percent
of the time, so we write P(H) = .05. Then they conduct a test. This time
P(T|H) = .8 (lower power) but again P(T|H¢) = .05. Using these new
parameters:

(d) Compute P(H|T).

(e) Compute the reproducibility rate P(T|T). Assume the second test is
like the first test, so that P(T|HT) = .8 but P(T|H*T) = .05.

Remark: If you google Nosek reproducibility you can learn about one
attempt to systematically reproduce 100 psychology studies, which
succeeded a bit less than 40 perent of the time. Note that P(T|T) ~ .4 is
(for better or worse) closer to Speculative Science Planet than Cautious
Science Planet. The possibility that P(H|T) < 1/2 for real world science
was famously discussed in a paper called Why Most Published Research
Findings Are False by loannidis in 2005.

Questions for thought: What are the pros and cons of the two planets?
Is it necessarily bad for P(T|T) and P(H|T) to be low in some contexts
(assuming that people know this and don’t put too much trust in single
studies)? Do we need to do larger and more careful studies? What
improvements can be made in fields like medicine, where controlled clinical
data is sparse and expensive but life and death decisions have to be made
nonetheless? These questions go well beyond the scope of this course, but
we will say a bit more about the tradeoffs involved when we study the
central limit theorem.



