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Expectation of a discrete random variable

I Recall: a random variable X is a function from the state space
to the real numbers.

I Can interpret X as a quantity whose value depends on the
outcome of an experiment.

I Say X is a discrete random variable if (with probability one)
it takes one of a countable set of values.

I For each a in this countable set, write p(a) := P{X = a}.
Call p the probability mass function.

I The expectation of X , written E [X ], is defined by

E [X ] =
∑

x :p(x)>0

xp(x).

I Represents weighted average of possible values X can take,
each value being weighted by its probability.
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Simple examples

I Suppose that a random variable X satisfies P{X = 1} = .5,
P{X = 2} = .25 and P{X = 3} = .25.

I What is E [X ]?

I Answer: .5× 1 + .25× 2 + .25× 3 = 1.75.

I Suppose P{X = 1} = p and P{X = 0} = 1− p. Then what
is E [X ]?

I Answer: p.

I Roll a standard six-sided die. What is the expectation of
number that comes up?

I Answer: 1
61 + 1

62 + 1
63 + 1

64 + 1
65 + 1

66 = 21
6 = 3.5.
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Expectation when state space is countable

I If the state space S is countable, we can give SUM OVER
STATE SPACE definition of expectation:

E [X ] =
∑
s∈S

P{s}X (s).

I Compare this to the SUM OVER POSSIBLE X VALUES
definition we gave earlier:

E [X ] =
∑

x :p(x)>0

xp(x).

I Example: toss two coins. If X is the number of heads, what is
E [X ]?

I State space is {(H,H), (H,T ), (T ,H), (T ,T )} and summing
over state space gives E [X ] = 1

42 + 1
41 + 1

41 + 1
40 = 1.
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A technical point

I If the state space S is countable, is it possible that the sum
E [X ] =

∑
s∈S P({s})X (s) somehow depends on the order in

which s ∈ S are enumerated?

I In principle, yes... We only say expectation is defined when∑
s∈S P({x})|X (s)| <∞, in which case it turns out that the

sum does not depend on the order.
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Expectation of a function of a random variable

I If X is a random variable and g is a function from the real
numbers to the real numbers then g(X ) is also a random
variable.

I How can we compute E [g(X )]?
I SUM OVER STATE SPACE:

E [g(X )] =
∑
s∈S

P({s})g(X (s)).

I SUM OVER X VALUES:

E [g(X )] =
∑

x :p(x)>0

g(x)p(x).

I Suppose that constants a, b, µ are given and that E [X ] = µ.
I What is E [X + b]?
I How about E [aX ]?
I Generally, E [aX + b] = aE [X ] + b = aµ+ b.
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More examples

I Let X be the number that comes up when you roll a standard
six-sided die. What is E [X 2]?

I Let Xj be 1 if the jth coin toss is heads and 0 otherwise.
What is the expectation of X =

∑n
i=1 Xj?

I Can compute this directly as
∑n

k=0 P{X = k}k .

I Alternatively, use symmetry. Expected number of heads
should be same as expected number of tails.

I This implies E [X ] = E [n − X ]. Applying
E [aX + b] = aE [X ] + b formula (with a = −1 and b = n), we
obtain E [X ] = n − E [X ] and conclude that E [X ] = n/2.
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Additivity of expectation

I If X and Y are distinct random variables, then can one say
that E [X + Y ] = E [X ] + E [Y ]?

I Yes. In fact, for real constants a and b, we have
E [aX + bY ] = aE [X ] + bE [Y ].

I This is called the linearity of expectation.

I Another way to state this fact: given sample space S and
probability measure P, the expectation E [·] is a linear
real-valued function on the space of random variables.

I Can extend to more variables
E [X1 + X2 + . . .+ Xn] = E [X1] + E [X2] + . . .+ E [Xn].
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More examples

I Now can we compute expected number of people who get
own hats in n hat shuffle problem?

I Let Xi be 1 if ith person gets own hat and zero otherwise.

I What is E [Xi ], for i ∈ {1, 2, . . . , n}?
I Answer: 1/n.

I Can write total number with own hat as
X = X1 + X2 + . . .+ Xn.

I Linearity of expectation gives
E [X ] = E [X1] + E [X2] + . . .+ E [Xn] = n × 1/n = 1.
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X = X1 + X2 + . . .+ Xn.

I Linearity of expectation gives
E [X ] = E [X1] + E [X2] + . . .+ E [Xn] = n × 1/n = 1.
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Why should we care about expectation?

I Laws of large numbers: choose lots of independent random
variables with same probability distribution as X — their
average tends to be close to E [X ].

I Example: roll N = 106 dice, let Y be the sum of the numbers
that come up. Then Y /N is probably close to 3.5.

I Economic theory of decision making: Under “rationality”
assumptions, each of us has utility function and tries to
optimize its expectation.

I Financial contract pricing: under “no arbitrage/interest”
assumption, price of derivative equals its expected value in
so-called risk neutral probability.

I Comes up everywhere probability is applied.
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Expected utility when outcome only depends on wealth

I Contract one: I’ll toss 10 coins, and if they all come up heads
(probability about one in a thousand), I’ll give you 20 billion
dollars.

I Contract two: I’ll just give you ten million dollars.

I What are expectations of the two contracts? Which would
you prefer?

I Can you find a function u(x) such that given two random
wealth variables W1 and W2, you prefer W1 whenever
E [u(W1)] < E [u(W2)]?

I Let’s assume u(0) = 0 and u(1) = 1. Then u(x) = y means
that you are indifferent between getting 1 dollar no matter
what and getting x dollars with probability 1/y .
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