18.600: Lecture 38

Review: practice problems

Scott Sheffield

MIT

Order statistics

▶ Let X be a uniformly distributed random variable on [-1,1].

Order statistics

- Let X be a uniformly distributed random variable on [-1,1].
 - ▶ Compute the variance of X^2 .

Order statistics

- Let X be a uniformly distributed random variable on [-1,1].
 - ▶ Compute the variance of X^2 .
 - ▶ If $X_1, ..., X_n$ are independent copies of X, what is the probability density function for the smallest of the X_i

Order statistics — answers

$$Var[X^{2}] = E[X^{4}] - (E[X^{2}])^{2}$$
$$= \int_{-1}^{1} \frac{1}{2} x^{4} dx - (\int_{-1}^{1} \frac{1}{2} x^{2} dx)^{2} = \frac{1}{5} - \frac{1}{9} = \frac{4}{45}.$$

Order statistics — answers

$$\begin{aligned} \operatorname{Var}[X^2] &= E[X^4] - (E[X^2])^2 \\ &= \int_{-1}^1 \frac{1}{2} x^4 dx - (\int_{-1}^1 \frac{1}{2} x^2 dx)^2 = \frac{1}{5} - \frac{1}{9} = \frac{4}{45}. \end{aligned}$$

▶ Note that for $x \in [-1, 1]$ we have

$$P\{X > x\} = \int_{x}^{1} \frac{1}{2} dx = \frac{1-x}{2}.$$

If $x \in [-1, 1]$, then

$$P\{\min\{X_1,\ldots,X_n\} > x\}$$

$$= P\{X_1 > x, X_2 > x,\ldots,X_n > x\} = (\frac{1-x}{2})^n.$$

So the density function is

$$-\frac{\partial}{\partial x}(\frac{1-x}{2})^n = \frac{n}{2}(\frac{1-x}{2})^{n-1}.$$

Moment generating functions

Suppose that X_i are independent copies of a random variable X. Let $M_X(t)$ be the moment generating function for X. Compute the moment generating function for the average $\sum_{i=1}^{n} X_i/n$ in terms of $M_X(t)$ and n.

Moment generating functions — answers

• Write $Y = \sum_{i=1}^{n} X_i/n$. Then

$$M_Y(t) = E[e^{tY}] = E[e^{t\sum_{i=1}^n X_i/n}] = (M_X(t/n))^n.$$

Entropy

- ▶ Suppose *X* and *Y* are independent random variables, each equal to 1 with probability 1/3 and equal to 2 with probability 2/3.
 - ▶ Compute the entropy H(X).

Entropy

- ▶ Suppose *X* and *Y* are independent random variables, each equal to 1 with probability 1/3 and equal to 2 with probability 2/3.
 - Compute the entropy H(X).
 - ▶ Compute H(X + Y).

Entropy

- ▶ Suppose *X* and *Y* are independent random variables, each equal to 1 with probability 1/3 and equal to 2 with probability 2/3.
 - Compute the entropy H(X).
 - ▶ Compute H(X + Y).
 - ▶ Which is larger, H(X + Y) or H(X, Y)? Would the answer to this question be the same for any discrete random variables X and Y? Explain.

Entropy — answers

$$H(X) = \frac{1}{3}(-\log\frac{1}{3}) + \frac{2}{3}(-\log\frac{2}{3}).$$

Entropy — answers

$$H(X) = \frac{1}{3}(-\log\frac{1}{3}) + \frac{2}{3}(-\log\frac{2}{3}).$$

$$H(X+Y) = \frac{1}{9}(-\log\frac{1}{9}) + \frac{4}{9}(-\log\frac{4}{9}) + \frac{4}{9}(-\log\frac{4}{9})$$

Entropy — answers

- $H(X) = \frac{1}{2}(-\log \frac{1}{2}) + \frac{2}{2}(-\log \frac{2}{2}).$
- $H(X+Y) = \frac{1}{0}(-\log\frac{1}{0}) + \frac{4}{0}(-\log\frac{4}{0}) + \frac{4}{0}(-\log\frac{4}{0})$
- ▶ H(X, Y) is larger, and we have $H(X, Y) \ge H(X + Y)$ for any X and Y. To see why, write $a(x, y) = P\{X = x, Y = y\}$ and $b(x,y) = P\{X + Y = x + y\}$. Then a(x,y) < b(x,y) for any x and v. so $H(X, Y) = E[-\log a(x, y)] > E[-\log b(x, y)] = H(X + Y).$

$$H(X, Y) = E[-\log a(x, y)] \ge E[-\log b(x, y)] = H(X + Y).$$