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Markov chains

I Consider a sequence of random variables X0,X1,X2, . . . each
taking values in the same state space, which for now we take
to be a finite set that we label by {0, 1, . . . ,M}.

I Interpret Xn as state of the system at time n.

I Sequence is called a Markov chain if we have a fixed
collection of numbers Pij (one for each pair
i , j ∈ {0, 1, . . . ,M}) such that whenever the system is in state
i , there is probability Pij that system will next be in state j .

I Precisely,
P{Xn+1 = j |Xn = i ,Xn−1 = in−1, . . . ,X1 = i1,X0 = i0} = Pij .

I Kind of an “almost memoryless” property. Probability
distribution for next state depends only on the current state
(and not on the rest of the state history).
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Simple example

I For example, imagine a simple weather model with two states:
rainy and sunny.

I If it’s rainy one day, there’s a .5 chance it will be rainy the
next day, a .5 chance it will be sunny.

I If it’s sunny one day, there’s a .8 chance it will be sunny the
next day, a .2 chance it will be rainy.

I In this climate, sun tends to last longer than rain.

I Given that it is rainy today, how many days to I expect to
have to wait to see a sunny day?

I Given that it is sunny today, how many days to I expect to
have to wait to see a rainy day?

I Over the long haul, what fraction of days are sunny?
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Matrix representation

I To describe a Markov chain, we need to define Pij for any
i , j ∈ {0, 1, . . . ,M}.

I It is convenient to represent the collection of transition
probabilities Pij as a matrix:

A =



P00 P01 . . . P0M

P10 P11 . . . P1M

·
·
·

PM0 PM1 . . . PMM


I For this to make sense, we require Pij ≥ 0 for all i , j and∑M

j=0 Pij = 1 for each i . That is, the rows sum to one.
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Transitions via matrices

I Suppose that pi is the probability that system is in state i at
time zero.

I What does the following product represent?

(
p0 p1 . . . pM

)


P00 P01 . . . P0M

P10 P11 . . . P1M

·
·
·

PM0 PM1 . . . PMM


I Answer: the probability distribution at time one.

I How about the following product?(
p0 p1 . . . pM

)
An

I Answer: the probability distribution at time n.
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Powers of transition matrix

I We write P
(n)
ij for the probability to go from state i to state j

over n steps.

I From the matrix point of view

P
(n)
00 P

(n)
01 . . . P

(n)
0M

P
(n)
10 P

(n)
11 . . . P

(n)
1M

·
·
·

P
(n)
M0 P

(n)
M1 . . . P

(n)
MM


=



P00 P01 . . . P0M

P10 P11 . . . P1M

·
·
·

PM0 PM1 . . . PMM



n

I If A is the one-step transition matrix, then An is the n-step
transition matrix.
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Questions

I What does it mean if all of the rows are identical?

I Answer: state sequence Xi consists of i.i.d. random variables.

I What if matrix is the identity?

I Answer: states never change.

I What if each Pij is either one or zero?

I Answer: state evolution is deterministic.
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Simple example

I Consider the simple weather example: If it’s rainy one day,
there’s a .5 chance it will be rainy the next day, a .5 chance it
will be sunny. If it’s sunny one day, there’s a .8 chance it will
be sunny the next day, a .2 chance it will be rainy.

I Let rainy be state zero, sunny state one, and write the
transition matrix by

A =

(
.5 .5
.2 .8

)
I Note that

A2 =

(
.64 .35
.26 .74

)
I Can compute A10 =

(
.285719 .714281
.285713 .714287

)
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Does relationship status have the Markov property?

Single

In a relationship

It’s complicated

EngagedMarried

I Can we assign a probability to each arrow?

I Markov model implies time spent in any state (e.g., a
marriage) before leaving is a geometric random variable.

I Not true... Can we make a better model with more states?
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Ergodic Markov chains

I Say Markov chain is ergodic if some power of the transition
matrix has all non-zero entries.

I Turns out that if chain has this property, then

πj := limn→∞ P
(n)
ij exists and the πj are the unique

non-negative solutions of πj =
∑M

k=0 πkPkj that sum to one.

I This means that the row vector

π =
(
π0 π1 . . . πM

)
is a left eigenvector of A with eigenvalue 1, i.e., πA = π.

I We call π the stationary distribution of the Markov chain.

I One can solve the system of linear equations
πj =

∑M
k=0 πkPkj to compute the values πj . Equivalent to

considering A fixed and solving πA = π. Or solving
(A− I )π = 0. This determines π up to a multiplicative
constant, and fact that

∑
πj = 1 determines the constant.
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Simple example

I If A =

(
.5 .5
.2 .8

)
, then we know

πA =
(
π0 π1

)( .5 .5
.2 .8

)
=
(
π0 π1

)
= π.

I This means that .5π0 + .2π1 = π0 and .5π0 + .8π1 = π1 and
we also know that π0 + π1 = 1. Solving these equations gives
π0 = 2/7 and π1 = 5/7, so π =

(
2/7 5/7

)
.

I Indeed,

πA =
(

2/7 5/7
)( .5 .5

.2 .8

)
=
(

2/7 5/7
)

= π.

I Recall that

A10 =

(
.285719 .714281
.285713 .714287

)
≈
(

2/7 5/7
2/7 5/7

)
=

(
π
π

)
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