18.600: Lecture 32 Strong law of large numbers and Jensen's inequality

Scott Sheffield

MIT

A story about Pedro

Strong law of large numbers

Jensen's inequality

A story about Pedro

Strong law of large numbers

Jensen's inequality

Pedro is considering two ways to invest his life savings.

- Pedro is considering two ways to invest his life savings.
- One possibility: put the entire sum in government insured interest-bearing savings account. He considers this completely risk free. The (post-tax) interest rate equals the inflation rate, so the real value of his savings is guaranteed not to change.

- Pedro is considering two ways to invest his life savings.
- One possibility: put the entire sum in government insured interest-bearing savings account. He considers this completely risk free. The (post-tax) interest rate equals the inflation rate, so the real value of his savings is guaranteed not to change.
- Riskier possibility: put sum in investment where every month real value goes up 15 percent with probability .53 and down 15 percent with probability .47 (independently of everything else).

- Pedro is considering two ways to invest his life savings.
- One possibility: put the entire sum in government insured interest-bearing savings account. He considers this completely risk free. The (post-tax) interest rate equals the inflation rate, so the real value of his savings is guaranteed not to change.
- Riskier possibility: put sum in investment where every month real value goes up 15 percent with probability .53 and down 15 percent with probability .47 (independently of everything else).
- How much does Pedro make in expectation over 10 years with risky approach? 100 years?

How much does Pedro make in expectation over 10 years with risky approach? 100 years?

- How much does Pedro make in expectation over 10 years with risky approach? 100 years?
- Answer: let R_i be i.i.d. random variables each equal to 1.15 with probability .53 and .85 with probability .47. Total value after n steps is initial investment times
 T is R × R × R

 $T_n := R_1 \times R_2 \times \ldots \times R_n.$

- How much does Pedro make in expectation over 10 years with risky approach? 100 years?
- Answer: let R_i be i.i.d. random variables each equal to 1.15 with probability .53 and .85 with probability .47. Total value after n steps is initial investment times T_n := R₁ × R₂ × ... × R_n.
- Compute $E[R_1] = .53 \times 1.15 + .47 \times .85 = 1.009$.

- How much does Pedro make in expectation over 10 years with risky approach? 100 years?
- ► Answer: let R_i be i.i.d. random variables each equal to 1.15 with probability .53 and .85 with probability .47. Total value after n steps is initial investment times T_n := R₁ × R₂ × ... × R_n.
- Compute $E[R_1] = .53 \times 1.15 + .47 \times .85 = 1.009$.
- ► Then $E[T_{120}] = 1.009^{120} \approx 2.93$. And $E[T_{1200}] = 1.009^{1200} \approx 46808.9$

How would you advise Pedro to invest over the next 10 years if Pedro wants to be completely sure that he doesn't lose money?

- How would you advise Pedro to invest over the next 10 years if Pedro wants to be completely sure that he doesn't lose money?
- What if Pedro is willing to accept substantial risk if it means there is a good chance it will enable his grandchildren to retire in comfort 100 years from now?

- How would you advise Pedro to invest over the next 10 years if Pedro wants to be completely sure that he doesn't lose money?
- What if Pedro is willing to accept substantial risk if it means there is a good chance it will enable his grandchildren to retire in comfort 100 years from now?
- What if Pedro wants the money for himself in ten years?

- How would you advise Pedro to invest over the next 10 years if Pedro wants to be completely sure that he doesn't lose money?
- What if Pedro is willing to accept substantial risk if it means there is a good chance it will enable his grandchildren to retire in comfort 100 years from now?
- What if Pedro wants the money for himself in ten years?
- Let's do some simulations.

• We wrote $T_n = R_1 \times \ldots \times R_n$. Taking logs, we can write $X_i = \log R_i$ and $S_n = \log T_n = \sum_{i=1}^n X_i$.

- We wrote $T_n = R_1 \times \ldots \times R_n$. Taking logs, we can write $X_i = \log R_i$ and $S_n = \log T_n = \sum_{i=1}^n X_i$.
- Now S_n is a sum of i.i.d. random variables.

- We wrote $T_n = R_1 \times \ldots \times R_n$. Taking logs, we can write $X_i = \log R_i$ and $S_n = \log T_n = \sum_{i=1}^n X_i$.
- Now S_n is a sum of i.i.d. random variables.
- ► $E[X_1] = E[\log R_1] = .53(\log 1.15) + .47(\log .85) \approx -.0023.$

- We wrote $T_n = R_1 \times \ldots \times R_n$. Taking logs, we can write $X_i = \log R_i$ and $S_n = \log T_n = \sum_{i=1}^n X_i$.
- Now S_n is a sum of i.i.d. random variables.
- $E[X_1] = E[\log R_1] = .53(\log 1.15) + .47(\log .85) \approx -.0023.$
- ▶ By the law of large numbers, if we take *n* extremely large, then $S_n/n \approx -.0023$ with high probability.

- We wrote $T_n = R_1 \times \ldots \times R_n$. Taking logs, we can write $X_i = \log R_i$ and $S_n = \log T_n = \sum_{i=1}^n X_i$.
- Now S_n is a sum of i.i.d. random variables.
- ► $E[X_1] = E[\log R_1] = .53(\log 1.15) + .47(\log .85) \approx -.0023.$
- ▶ By the law of large numbers, if we take *n* extremely large, then $S_n/n \approx -.0023$ with high probability.
- ► This means that, when n is large, S_n is usually a very negative value, which means T_n is usually very close to zero (even though its expectation is very large).

- We wrote $T_n = R_1 \times \ldots \times R_n$. Taking logs, we can write $X_i = \log R_i$ and $S_n = \log T_n = \sum_{i=1}^n X_i$.
- Now S_n is a sum of i.i.d. random variables.
- ► $E[X_1] = E[\log R_1] = .53(\log 1.15) + .47(\log .85) \approx -.0023.$
- ▶ By the law of large numbers, if we take *n* extremely large, then $S_n/n \approx -.0023$ with high probability.
- ► This means that, when n is large, S_n is usually a very negative value, which means T_n is usually very close to zero (even though its expectation is very large).
- ▶ Bad news for Pedro's grandchildren. After 100 years, the portfolio is probably in bad shape. But what if Pedro takes an even longer view? Will *T_n* converge to zero with probability one as *n* gets large? Or will *T_n* perhaps always *eventually* rebound?

A story about Pedro

Strong law of large numbers

Jensen's inequality

A story about Pedro

Strong law of large numbers

Jensen's inequality

Suppose X_i are i.i.d. random variables with mean μ .

- Suppose X_i are i.i.d. random variables with mean μ .
- ► Then the value $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ is called the *empirical* average of the first *n* trials.

- Suppose X_i are i.i.d. random variables with mean μ .
- ► Then the value A_n := X₁+X₂+...+X_n/n is called the *empirical* average of the first n trials.
- Intuition: when *n* is large, A_n is typically close to μ .

- Suppose X_i are i.i.d. random variables with mean μ .
- ► Then the value A_n := X₁+X₂+...+X_n/n is called the *empirical* average of the first n trials.
- Intuition: when *n* is large, A_n is typically close to μ .
- ► Recall: weak law of large numbers states that for all ε > 0 we have lim_{n→∞} P{|A_n − μ| > ε} = 0.

- Suppose X_i are i.i.d. random variables with mean μ .
- ► Then the value A_n := X₁+X₂+...+X_n/n is called the *empirical* average of the first n trials.
- Intuition: when *n* is large, A_n is typically close to μ .
- ▶ Recall: weak law of large numbers states that for all $\epsilon > 0$ we have $\lim_{n\to\infty} P\{|A_n \mu| > \epsilon\} = 0$.
- ► The strong law of large numbers states that with probability one $\lim_{n\to\infty} A_n = \mu$.

- Suppose X_i are i.i.d. random variables with mean μ .
- ► Then the value $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ is called the *empirical* average of the first *n* trials.
- Intuition: when *n* is large, A_n is typically close to μ .
- ▶ Recall: weak law of large numbers states that for all $\epsilon > 0$ we have $\lim_{n\to\infty} P\{|A_n \mu| > \epsilon\} = 0$.
- ► The strong law of large numbers states that with probability one $\lim_{n\to\infty} A_n = \mu$.
- It is called "strong" because it implies the weak law of large numbers. But it takes a bit of thought to see why this is the case.

Suppose we know that the strong law holds, i.e., with probability 1 we have lim_{n→∞} A_n = µ.

- Suppose we know that the strong law holds, i.e., with probability 1 we have lim_{n→∞} A_n = µ.

- Suppose we know that the strong law holds, i.e., with probability 1 we have lim_{n→∞} A_n = µ.
- ▶ Note that if $|A_n \mu| > \epsilon$ for some *n* value then $Y_{\epsilon} \ge n$.

- Suppose we know that the strong law holds, i.e., with probability 1 we have lim_{n→∞} A_n = µ.
- ▶ Note that if $|A_n \mu| > \epsilon$ for some *n* value then $Y_{\epsilon} \ge n$.
- Thus for each n we have P{|A_n − µ| > ε} ≤ P{Y_ε ≥ n}.

- Suppose we know that the strong law holds, i.e., with probability 1 we have lim_{n→∞} A_n = µ.
- ▶ Note that if $|A_n \mu| > \epsilon$ for some *n* value then $Y_{\epsilon} \ge n$.
- Thus for each *n* we have $P\{|A_n \mu| > \epsilon\} \le P\{Y_{\epsilon} \ge n\}$.
- ► So $\lim_{n\to\infty} P\{|A_n \mu| > \epsilon\} \le \lim_{n\to\infty} P\{Y_{\epsilon} \ge n\} = 0.$

- Suppose we know that the strong law holds, i.e., with probability 1 we have lim_{n→∞} A_n = µ.
- ▶ Note that if $|A_n \mu| > \epsilon$ for some *n* value then $Y_{\epsilon} \ge n$.
- Thus for each *n* we have $P\{|A_n \mu| > \epsilon\} \le P\{Y_{\epsilon} \ge n\}$.
- So $\lim_{n\to\infty} P\{|A_n-\mu|>\epsilon\} \leq \lim_{n\to\infty} P\{Y_\epsilon\geq n\}=0.$
- ► If the right limit is zero for each e (strong law) then the left limit is zero for each e (weak law).

• Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 > 0$, so $E[X^2]^2 \le K$.

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 > 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 > 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.
- So we may as well assume E[X] = 0.

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 > 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.
- So we may as well assume E[X] = 0.
- Key to proof is to bound fourth moments of A_n .

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 > 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.
- So we may as well assume E[X] = 0.
- Key to proof is to bound fourth moments of A_n .

•
$$E[A_n^4] = n^{-4}E[S_n^4] = n^{-4}E[(X_1 + X_2 + \ldots + X_n)^4].$$

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 > 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.
- So we may as well assume E[X] = 0.
- Key to proof is to bound fourth moments of A_n .
- $E[A_n^4] = n^{-4}E[S_n^4] = n^{-4}E[(X_1 + X_2 + \ldots + X_n)^4].$
- Expand $(X_1 + \ldots + X_n)^4$. Five kinds of terms: $X_i X_j X_k X_l$ and $X_i X_j X_k^2$ and $X_i X_j^3$ and $X_i^2 X_j^2$ and X_i^4 .

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 > 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.
- So we may as well assume E[X] = 0.
- Key to proof is to bound fourth moments of A_n .
- $E[A_n^4] = n^{-4}E[S_n^4] = n^{-4}E[(X_1 + X_2 + \ldots + X_n)^4].$
- ► Expand $(X_1 + ... + X_n)^4$. Five kinds of terms: $X_i X_j X_k X_l$ and $X_i X_j X_k^2$ and $X_i X_j^3$ and $X_i^2 X_j^2$ and X_i^4 .
- The first three terms all have expectation zero. There are ⁿ₂ of the fourth type and n of the last type, each equal to at most K. So E[A⁴_n] ≤ n⁻⁴ (6ⁿ₂) + n)K.

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 > 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.
- So we may as well assume E[X] = 0.
- Key to proof is to bound fourth moments of A_n .
- $E[A_n^4] = n^{-4}E[S_n^4] = n^{-4}E[(X_1 + X_2 + \ldots + X_n)^4].$
- Expand $(X_1 + \ldots + X_n)^4$. Five kinds of terms: $X_i X_j X_k X_l$ and $X_i X_j X_k^2$ and $X_i X_j^3$ and $X_i^2 X_j^2$ and X_i^4 .
- The first three terms all have expectation zero. There are ⁿ₂ of the fourth type and n of the last type, each equal to at most K. So E[A⁴_n] ≤ n⁻⁴ (6ⁿ₂) + n)K.
- ▶ Thus $E[\sum_{n=1}^{\infty} A_n^4] = \sum_{n=1}^{\infty} E[A_n^4] < \infty$. So $\sum_{n=1}^{\infty} A_n^4 < \infty$ (and hence $A_n \to 0$) with probability 1.

A story about Pedro

Strong law of large numbers

Jensen's inequality

A story about Pedro

Strong law of large numbers

Jensen's inequality

• Let X be random variable with finite mean $E[X] = \mu$.

- Let X be random variable with finite mean $E[X] = \mu$.
- ▶ Let g be a **convex** function. This means that if you draw a straight line connecting two points on the graph of g, then the graph of g lies below that line. If g is twice differentiable, then convexity is equivalent to the statement that $g''(x) \ge 0$ for all x. For a concrete example, take $g(x) = x^2$.

- Let X be random variable with finite mean $E[X] = \mu$.
- ▶ Let g be a **convex** function. This means that if you draw a straight line connecting two points on the graph of g, then the graph of g lies below that line. If g is twice differentiable, then convexity is equivalent to the statement that $g''(x) \ge 0$ for all x. For a concrete example, take $g(x) = x^2$.
- Jensen's inequality: $E[g(X)] \ge g(E[X])$.

- Let X be random variable with finite mean $E[X] = \mu$.
- ▶ Let g be a **convex** function. This means that if you draw a straight line connecting two points on the graph of g, then the graph of g lies below that line. If g is twice differentiable, then convexity is equivalent to the statement that $g''(x) \ge 0$ for all x. For a concrete example, take $g(x) = x^2$.
- Jensen's inequality: $E[g(X)] \ge g(E[X])$.
- ▶ Proof: Let L(x) = ax + b be tangent to graph of g at point (E[X], g(E[X])). Then L lies below g. Observe

 $E[g(X)] \ge E[L(X)] = L(E[X]) = g(E[X)]$

- Let X be random variable with finite mean $E[X] = \mu$.
- Let g be a **convex** function. This means that if you draw a straight line connecting two points on the graph of g, then the graph of g lies below that line. If g is twice differentiable, then convexity is equivalent to the statement that $g''(x) \ge 0$ for all x. For a concrete example, take $g(x) = x^2$.
- Jensen's inequality: $E[g(X)] \ge g(E[X])$.
- ▶ Proof: Let L(x) = ax + b be tangent to graph of g at point (E[X], g(E[X])). Then L lies below g. Observe

 $E[g(X)] \ge E[L(X)] = L(E[X]) = g(E[X)]$

► Note: if g is concave (which means -g is convex), then E[g(X)] ≤ g(E[X]).

- Let X be random variable with finite mean $E[X] = \mu$.
- Let g be a **convex** function. This means that if you draw a straight line connecting two points on the graph of g, then the graph of g lies below that line. If g is twice differentiable, then convexity is equivalent to the statement that $g''(x) \ge 0$ for all x. For a concrete example, take $g(x) = x^2$.
- Jensen's inequality: $E[g(X)] \ge g(E[X])$.
- ▶ Proof: Let L(x) = ax + b be tangent to graph of g at point (E[X], g(E[X])). Then L lies below g. Observe

 $E[g(X)] \ge E[L(X)] = L(E[X]) = g(E[X)]$

- ► Note: if g is concave (which means -g is convex), then E[g(X)] ≤ g(E[X]).
- If your utility function is concave, then you always prefer a safe investment over a risky investment with the same expected return.

 Disappointed by the strong law of large numbers, Pedro seeks a better way to make money.

- Disappointed by the strong law of large numbers, Pedro seeks a better way to make money.
- ► Signs up for job as "hedge fund manager". Allows him to manage C ≈ 10⁹ dollars of somebody else's money. At end of each year, he and his staff get two percent of principle plus twenty percent of profit.

- Disappointed by the strong law of large numbers, Pedro seeks a better way to make money.
- ▶ Signs up for job as "hedge fund manager". Allows him to manage $C \approx 10^9$ dollars of somebody else's money. At end of each year, he and his staff get two percent of principle plus twenty percent of profit.
- Precisely: if X is end-of-year portfolio value, Pedro gets

$$g(X) = .02C + .2 \max\{X - C, 0\}.$$

- Disappointed by the strong law of large numbers, Pedro seeks a better way to make money.
- ▶ Signs up for job as "hedge fund manager". Allows him to manage $C \approx 10^9$ dollars of somebody else's money. At end of each year, he and his staff get two percent of principle plus twenty percent of profit.
- Precisely: if X is end-of-year portfolio value, Pedro gets

$$g(X) = .02C + .2 \max\{X - C, 0\}.$$

Pedro notices that g is a convex function. He can therefore increase his expected return by adopting risky strategies.

- Disappointed by the strong law of large numbers, Pedro seeks a better way to make money.
- ▶ Signs up for job as "hedge fund manager". Allows him to manage $C \approx 10^9$ dollars of somebody else's money. At end of each year, he and his staff get two percent of principle plus twenty percent of profit.
- Precisely: if X is end-of-year portfolio value, Pedro gets

$$g(X) = .02C + .2 \max\{X - C, 0\}.$$

- Pedro notices that g is a convex function. He can therefore increase his expected return by adopting risky strategies.
- Pedro has strategy that increases portfolio value 10 percent with probability .9, loses everything with probability .1.

- Disappointed by the strong law of large numbers, Pedro seeks a better way to make money.
- ▶ Signs up for job as "hedge fund manager". Allows him to manage $C \approx 10^9$ dollars of somebody else's money. At end of each year, he and his staff get two percent of principle plus twenty percent of profit.
- Precisely: if X is end-of-year portfolio value, Pedro gets

$$g(X) = .02C + .2 \max\{X - C, 0\}.$$

- Pedro notices that g is a convex function. He can therefore increase his expected return by adopting risky strategies.
- Pedro has strategy that increases portfolio value 10 percent with probability .9, loses everything with probability .1.
- He repeats this yearly until fund collapses.

- Disappointed by the strong law of large numbers, Pedro seeks a better way to make money.
- ▶ Signs up for job as "hedge fund manager". Allows him to manage $C \approx 10^9$ dollars of somebody else's money. At end of each year, he and his staff get two percent of principle plus twenty percent of profit.
- Precisely: if X is end-of-year portfolio value, Pedro gets

$$g(X) = .02C + .2 \max\{X - C, 0\}.$$

- Pedro notices that g is a convex function. He can therefore increase his expected return by adopting risky strategies.
- Pedro has strategy that increases portfolio value 10 percent with probability .9, loses everything with probability .1.
- He repeats this yearly until fund collapses.
- With high probability Pedro is rich by then.

The "two percent of principle plus twenty percent of profit" is common in the hedge fund industry.

- The "two percent of principle plus twenty percent of profit" is common in the hedge fund industry.
- The idea is that fund managers have both guaranteed revenue for expenses (two percent of principle) and incentive to make money (twenty percent of profit).

- The "two percent of principle plus twenty percent of profit" is common in the hedge fund industry.
- The idea is that fund managers have both guaranteed revenue for expenses (two percent of principle) and incentive to make money (twenty percent of profit).
- Because of Jensen's inequality, the convexity of the payoff function is a genuine concern for hedge fund investors. People worry that it encourages fund managers (like Pedro) to take risks that are bad for the client.

- The "two percent of principle plus twenty percent of profit" is common in the hedge fund industry.
- The idea is that fund managers have both guaranteed revenue for expenses (two percent of principle) and incentive to make money (twenty percent of profit).
- Because of Jensen's inequality, the convexity of the payoff function is a genuine concern for hedge fund investors. People worry that it encourages fund managers (like Pedro) to take risks that are bad for the client.
- This is a special case of the "principal-agent" problem of economics. How do you ensure that the people you hire genuinely share your interests?