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Conditional distributions

I Let’s say X and Y have joint probability density function
f (x , y).

I We can define the conditional probability density of X given
that Y = y by fX |Y=y (x) = f (x ,y)

fY (y) .

I This amounts to restricting f (x , y) to the line corresponding
to the given y value (and dividing by the constant that makes
the integral along that line equal to 1).

I This definition assumes that fY (y) =
∫∞
−∞ f (x , y)dx <∞ and

fY (y) 6= 0. Is that safe to assume?

I Usually...
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Remarks: conditioning on a probability zero event

I Our standard definition of conditional probability is
P(A|B) = P(AB)/P(B).

I Doesn’t make sense if P(B) = 0. But previous slide defines
“probability conditioned on Y = y” and P{Y = y} = 0.

I When can we (somehow) make sense of conditioning on
probability zero event?

I Tough question in general.

I Consider conditional law of X given that Y ∈ (y − ε, y + ε). If
this has a limit as ε→ 0, we can call that the law conditioned
on Y = y .

I Precisely, define
FX |Y=y (a) := limε→0 P{X ≤ a|Y ∈ (y − ε, y + ε)}.

I Then set fX |Y=y (a) = F ′X |Y=y (a). Consistent with definition
from previous slide.
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A word of caution

I Suppose X and Y are chosen uniformly on the semicircle
{(x , y) : x2 + y2 ≤ 1, x ≥ 0}. What is fX |Y=0(x)?

I Answer: fX |Y=0(x) = 1 if x ∈ [0, 1] (zero otherwise).

I Let (θ,R) be (X ,Y ) in polar coordinates. What is fX |θ=0(x)?

I Answer: fX |θ=0(x) = 2x if x ∈ [0, 1] (zero otherwise).

I Both {θ = 0} and {Y = 0} describe the same probability zero
event. But our interpretation of what it means to condition
on this event is different in these two cases.

I Conditioning on (X ,Y ) belonging to a θ ∈ (−ε, ε) wedge is
very different from conditioning on (X ,Y ) belonging to a
Y ∈ (−ε, ε) strip.
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Maxima: pick five job candidates at random, choose best

I Suppose I choose n random variables X1,X2, . . . ,Xn uniformly
at random on [0, 1], independently of each other.

I The n-tuple (X1,X2, . . . ,Xn) has a constant density function
on the n-dimensional cube [0, 1]n.

I What is the probability that the largest of the Xi is less than
a?

I ANSWER: an.

I So if X = max{X1, . . . ,Xn}, then what is the probability
density function of X?

I Answer: FX (a) =


0 a < 0

an a ∈ [0, 1]

1 a > 1

. And

fx(a) = F ′X (a) = nan−1.
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General order statistics

I Consider i.i.d random variables X1,X2, . . . ,Xn with continuous
probability density f .

I Let Y1 < Y2 < Y3 . . . < Yn be list obtained by sorting the Xj .

I In particular, Y1 = min{X1, . . . ,Xn} and
Yn = max{X1, . . . ,Xn} is the maximum.

I What is the joint probability density of the Yi?

I Answer: f (x1, x2, . . . , xn) = n!
∏n

i=1 f (xi ) if x1 < x2 . . . < xn,
zero otherwise.

I Let σ : {1, 2, . . . , n} → {1, 2, . . . , n} be the permutation such
that Xj = Yσ(j)

I Are σ and the vector (Y1, . . . ,Yn) independent of each other?

I Yes.
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Example

I Let X1, . . . ,Xn be i.i.d. uniform random variables on [0, 1].

I Example: say n = 10 and condition on X1 being the third
largest of the Xj .

I Given this, what is the conditional probability density function
for X1?

I Write p = X1. This kind of like choosing a random p and
then conditioning on 7 heads and 2 tails.

I Answer is beta distribution with parameters (a, b) = (8, 3).

I Up to a constant, f (x) = x7(1− x)2.

I General beta (a, b) expectation is a/(a + b) = 8/11. Mode is
(a−1)

(a−1)+(b−1) = 2/9.
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I Answer is beta distribution with parameters (a, b) = (8, 3).

I Up to a constant, f (x) = x7(1− x)2.

I General beta (a, b) expectation is a/(a + b) = 8/11. Mode is
(a−1)

(a−1)+(b−1) = 2/9.
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Properties of expectation

I Several properties we derived for discrete expectations
continue to hold in the continuum.

I If X is discrete with mass function p(x) then
E [X ] =

∑
x p(x)x .

I Similarly, if X is continuous with density function f (x) then
E [X ] =

∫
f (x)xdx .

I If X is discrete with mass function p(x) then
E [g(x)] =

∑
x p(x)g(x).

I Similarly, X if is continuous with density function f (x) then
E [g(X )] =

∫
f (x)g(x)dx .

I If X and Y have joint mass function p(x , y) then
E [g(X ,Y )] =

∑
y

∑
x g(x , y)p(x , y).

I If X and Y have joint probability density function f (x , y) then
E [g(X ,Y )] =

∫∞
−∞

∫∞
−∞ g(x , y)f (x , y)dxdy .
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Properties of expectation

I For both discrete and continuous random variables X and Y
we have E [X + Y ] = E [X ] + E [Y ].

I In both discrete and continuous settings, E [aX ] = aE [X ]
when a is a constant. And E [

∑
aiXi ] =

∑
aiE [Xi ].

I But what about that delightful “area under 1− FX” formula
for the expectation?

I When X is non-negative with probability one, do we always
have E [X ] =

∫∞
0 P{X > x}, in both discrete and continuous

settings?

I Define g(y) so that 1− FX (g(y)) = y . (Draw horizontal line
at height y and look where it hits graph of 1− FX .)

I Choose Y uniformly on [0, 1] and note that g(Y ) has the
same probability distribution as X .

I So E [X ] = E [g(Y )] =
∫ 1
0 g(y)dy , which is indeed the area

under the graph of 1− FX .
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