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Tossing coins

I Suppose we toss a million fair coins. How many heads will we
get?

I About half a million, yes, but how close to that? Will we be
off by 10 or 1000 or 100,000?

I How can we describe the error?

I Let’s try this out.
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Tossing coins

I Toss n coins. What is probability to see k heads?

I Answer: 2−k
(n
k

)
.

I Let’s plot this for a few values of n.

I Seems to look like it’s converging to a curve.

I If we replace fair coin with p coin, what’s probability to see k
heads.

I Answer: pk(1− p)n−k
(n
k

)
.

I Let’s plot this for p = 2/3 and some values of n.

I What does limit shape seem to be?
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Standard normal random variable

I Say X is a (standard) normal random variable if
fX (x) = f (x) = 1√

2π
e−x

2/2.

I Clearly f is always non-negative for real values of x , but how
do we show that

∫∞
−∞ f (x)dx = 1?

I Looks kind of tricky.
I Happens to be a nice trick. Write I =

∫∞
−∞ e−x

2/2dx . Then

try to compute I 2 as a two dimensional integral.
I That is, write

I 2 =

∫ ∞
−∞

e−x
2/2dx

∫ ∞
−∞

e−y
2/2dy =

∫ ∞
−∞

∫ ∞
−∞

e−x
2/2dxe−y

2/2dy .

I Then switch to polar coordinates.

I 2 =

∫ ∞
0

∫ 2π

0
e−r

2/2rdθdr = 2π

∫ ∞
0

re−r
2/2dr = −2πe−r

2/2
∣∣∣∞
0
,

so I =
√

2π.

18.600 Lecture 19



Standard normal random variable

I Say X is a (standard) normal random variable if
fX (x) = f (x) = 1√

2π
e−x

2/2.

I Clearly f is always non-negative for real values of x , but how
do we show that

∫∞
−∞ f (x)dx = 1?

I Looks kind of tricky.
I Happens to be a nice trick. Write I =

∫∞
−∞ e−x

2/2dx . Then

try to compute I 2 as a two dimensional integral.
I That is, write

I 2 =

∫ ∞
−∞

e−x
2/2dx

∫ ∞
−∞

e−y
2/2dy =

∫ ∞
−∞

∫ ∞
−∞

e−x
2/2dxe−y

2/2dy .

I Then switch to polar coordinates.

I 2 =

∫ ∞
0

∫ 2π

0
e−r

2/2rdθdr = 2π

∫ ∞
0

re−r
2/2dr = −2πe−r

2/2
∣∣∣∞
0
,

so I =
√

2π.

18.600 Lecture 19



Standard normal random variable

I Say X is a (standard) normal random variable if
fX (x) = f (x) = 1√

2π
e−x

2/2.

I Clearly f is always non-negative for real values of x , but how
do we show that

∫∞
−∞ f (x)dx = 1?

I Looks kind of tricky.

I Happens to be a nice trick. Write I =
∫∞
−∞ e−x

2/2dx . Then

try to compute I 2 as a two dimensional integral.
I That is, write

I 2 =

∫ ∞
−∞

e−x
2/2dx

∫ ∞
−∞

e−y
2/2dy =

∫ ∞
−∞

∫ ∞
−∞

e−x
2/2dxe−y

2/2dy .

I Then switch to polar coordinates.

I 2 =

∫ ∞
0

∫ 2π

0
e−r

2/2rdθdr = 2π

∫ ∞
0

re−r
2/2dr = −2πe−r

2/2
∣∣∣∞
0
,

so I =
√

2π.

18.600 Lecture 19



Standard normal random variable

I Say X is a (standard) normal random variable if
fX (x) = f (x) = 1√

2π
e−x

2/2.

I Clearly f is always non-negative for real values of x , but how
do we show that

∫∞
−∞ f (x)dx = 1?

I Looks kind of tricky.
I Happens to be a nice trick. Write I =

∫∞
−∞ e−x

2/2dx . Then

try to compute I 2 as a two dimensional integral.

I That is, write

I 2 =

∫ ∞
−∞

e−x
2/2dx

∫ ∞
−∞

e−y
2/2dy =

∫ ∞
−∞

∫ ∞
−∞

e−x
2/2dxe−y

2/2dy .

I Then switch to polar coordinates.

I 2 =

∫ ∞
0

∫ 2π

0
e−r

2/2rdθdr = 2π

∫ ∞
0

re−r
2/2dr = −2πe−r

2/2
∣∣∣∞
0
,

so I =
√

2π.

18.600 Lecture 19



Standard normal random variable

I Say X is a (standard) normal random variable if
fX (x) = f (x) = 1√

2π
e−x

2/2.

I Clearly f is always non-negative for real values of x , but how
do we show that

∫∞
−∞ f (x)dx = 1?

I Looks kind of tricky.
I Happens to be a nice trick. Write I =

∫∞
−∞ e−x

2/2dx . Then

try to compute I 2 as a two dimensional integral.
I That is, write

I 2 =

∫ ∞
−∞

e−x
2/2dx

∫ ∞
−∞

e−y
2/2dy =

∫ ∞
−∞

∫ ∞
−∞

e−x
2/2dxe−y

2/2dy .

I Then switch to polar coordinates.

I 2 =

∫ ∞
0

∫ 2π

0
e−r

2/2rdθdr = 2π

∫ ∞
0

re−r
2/2dr = −2πe−r

2/2
∣∣∣∞
0
,

so I =
√

2π.

18.600 Lecture 19



Standard normal random variable

I Say X is a (standard) normal random variable if
fX (x) = f (x) = 1√

2π
e−x

2/2.

I Clearly f is always non-negative for real values of x , but how
do we show that

∫∞
−∞ f (x)dx = 1?

I Looks kind of tricky.
I Happens to be a nice trick. Write I =

∫∞
−∞ e−x

2/2dx . Then

try to compute I 2 as a two dimensional integral.
I That is, write

I 2 =

∫ ∞
−∞

e−x
2/2dx

∫ ∞
−∞

e−y
2/2dy =

∫ ∞
−∞

∫ ∞
−∞

e−x
2/2dxe−y

2/2dy .

I Then switch to polar coordinates.

I 2 =

∫ ∞
0

∫ 2π

0
e−r

2/2rdθdr = 2π

∫ ∞
0

re−r
2/2dr = −2πe−r

2/2
∣∣∣∞
0
,

so I =
√

2π.
18.600 Lecture 19



Standard normal random variable mean and variance

I Say X is a (standard) normal random variable if
f (x) = 1√

2π
e−x

2/2.

I Question: what are mean and variance of X?

I E [X ] =
∫∞
−∞ xf (x)dx . Can see by symmetry that this zero.

I Or can compute directly:

E [X ] =

∫ ∞
−∞

1√
2π

e−x
2/2xdx =

1√
2π

e−x
2/2
∣∣∣∞
−∞

= 0.

I How would we compute
Var[X ] =

∫
f (x)x2dx =

∫∞
−∞

1√
2π
e−x

2/2x2dx?

I Try integration by parts with u = x and dv = xe−x
2/2dx .

Find that Var[X ] = 1√
2π

(−xe−x2/2
∣∣∣∞
−∞

+
∫∞
−∞ e−x

2/2dx) = 1.
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General normal random variables

I Again, X is a (standard) normal random variable if
f (x) = 1√

2π
e−x

2/2.

I What about Y = σX + µ? Can we “stretch out” and
“translate” the normal distribution (as we did last lecture for
the uniform distribution)?

I Say Y is normal with parameters µ and σ2 if
f (x) = 1√

2πσ
e−(x−µ)

2/2σ2
.

I What are the mean and variance of Y ?

I E [Y ] = E [X ] + µ = µ and Var[Y ] = σ2Var[X ] = σ2.
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Cumulative distribution function

I Again, X is a standard normal random variable if
f (x) = 1√

2π
e−x

2/2.

I What is the cumulative distribution function?

I Write this as FX (a) = P{X ≤ a} = 1√
2π

∫ a
−∞ e−x

2/2dx .

I How can we compute this integral explicitly?

I Can’t. Let’s just give it a name. Write
Φ(a) = 1√

2π

∫ a
−∞ e−x

2/2dx .

I Values: Φ(−3) ≈ .0013, Φ(−2) ≈ .023 and Φ(−1) ≈ .159.

I Rough rule of thumb: “two thirds of time within one SD of
mean, 95 percent of time within 2 SDs of mean.”
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f (x) = 1√

2π
e−x

2/2.

I What is the cumulative distribution function?

I Write this as FX (a) = P{X ≤ a} = 1√
2π

∫ a
−∞ e−x

2/2dx .

I How can we compute this integral explicitly?

I Can’t. Let’s just give it a name. Write
Φ(a) = 1√

2π

∫ a
−∞ e−x

2/2dx .

I Values: Φ(−3) ≈ .0013, Φ(−2) ≈ .023 and Φ(−1) ≈ .159.

I Rough rule of thumb: “two thirds of time within one SD of
mean, 95 percent of time within 2 SDs of mean.”
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DeMoivre-Laplace Limit Theorem

I Let Sn be number of heads in n tosses of a p coin.

I What’s the standard deviation of Sn?

I Answer:
√
npq (where q = 1− p).

I The special quantity Sn−np√
npq describes the number of standard

deviations that Sn is above or below its mean.

I What’s the mean and variance of this special quantity? Is it
roughly normal?

I DeMoivre-Laplace limit theorem (special case of central
limit theorem):

lim
n→∞

P{a ≤ Sn − np
√
npq

≤ b} → Φ(b)− Φ(a).

I This is Φ(b)− Φ(a) = P{a ≤ X ≤ b} when X is a standard
normal random variable.
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Problems

I Toss a million fair coins. Approximate the probability that I
get more than 501, 000 heads.

I Answer: well,
√
npq =

√
106 × .5× .5 = 500. So we’re asking

for probability to be over two SDs above mean. This is
approximately 1− Φ(2) = Φ(−2) ≈ .159.

I Roll 60000 dice. Expect to see 10000 sixes. What’s the
probability to see more than 9800?

I Here
√
npq =

√
60000× 1

6 ×
5
6 ≈ 91.28.

I And 200/91.28 ≈ 2.19. Answer is about 1− Φ(−2.19).
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