18.440: Lecture 4

Axioms of probability and inclusion-exclusion

Scott Sheffield

MIT

Outline

Axioms of probability

Consequences of axioms

Inclusion exclusion

Outline

Axioms of probability

Consequences of axioms

Inclusion exclusion

▶ $P(A) \in [0,1]$ for all $A \subset S$.

- ▶ $P(A) \in [0,1]$ for all $A \subset S$.
- ▶ P(S) = 1.

- ▶ $P(A) \in [0,1]$ for all $A \subset S$.
- ▶ P(S) = 1.
- ▶ Finite additivity: $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$.

- ▶ $P(A) \in [0,1]$ for all $A \subset S$.
- ▶ P(S) = 1.
- ▶ Finite additivity: $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$.
- ▶ Countable additivity: $P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$ if $E_i \cap E_j = \emptyset$ for each pair i and j.

► **Neurological:** When I think "it will rain tomorrow" the "truth-sensing" part of my brain exhibits 30 percent of its maximum electrical activity.

- ► **Neurological:** When I think "it will rain tomorrow" the "truth-sensing" part of my brain exhibits 30 percent of its maximum electrical activity.
- ▶ **Frequentist:** P(A) is the fraction of times A occurred during the previous (large number of) times we ran the experiment.

- Neurological: When I think "it will rain tomorrow" the "truth-sensing" part of my brain exhibits 30 percent of its maximum electrical activity.
- ▶ **Frequentist:** P(A) is the fraction of times A occurred during the previous (large number of) times we ran the experiment.
- ▶ Market preference ("risk neutral probability"): *P*(*A*) is price of contract paying dollar if *A* occurs divided by price of contract paying dollar regardless.

- ► **Neurological:** When I think "it will rain tomorrow" the "truth-sensing" part of my brain exhibits 30 percent of its maximum electrical activity.
- ▶ **Frequentist:** P(A) is the fraction of times A occurred during the previous (large number of) times we ran the experiment.
- ▶ Market preference ("risk neutral probability"): *P*(*A*) is price of contract paying dollar if *A* occurs divided by price of contract paying dollar regardless.
- ▶ **Personal belief:** *P*(*A*) is amount such that I'd be indifferent between contract paying 1 if *A* occurs and contract paying *P*(*A*) no matter what.

▶ What if personal belief function doesn't satisfy axioms?

- What if personal belief function doesn't satisfy axioms?
- Consider an A-contract (pays 10 if candidate A wins election) a B-contract (pays 10 dollars if candidate B wins) and an A-or-B contract (pays 10 if either A or B wins).

- What if personal belief function doesn't satisfy axioms?
- Consider an A-contract (pays 10 if candidate A wins election) a B-contract (pays 10 dollars if candidate B wins) and an A-or-B contract (pays 10 if either A or B wins).
- ► Friend: "I'd say A-contract is worth 1 dollar, B-contract is worth 1 dollar, A-or-B contract is worth 7 dollars."

- What if personal belief function doesn't satisfy axioms?
- Consider an A-contract (pays 10 if candidate A wins election) a B-contract (pays 10 dollars if candidate B wins) and an A-or-B contract (pays 10 if either A or B wins).
- ► Friend: "I'd say A-contract is worth 1 dollar, B-contract is worth 1 dollar, A-or-B contract is worth 7 dollars."
- ► Amateur response: "Dude, that is, like, so messed up. Haven't you heard of the axioms of probability?"

- What if personal belief function doesn't satisfy axioms?
- Consider an A-contract (pays 10 if candidate A wins election) a B-contract (pays 10 dollars if candidate B wins) and an A-or-B contract (pays 10 if either A or B wins).
- ► Friend: "I'd say A-contract is worth 1 dollar, B-contract is worth 1 dollar, A-or-B contract is worth 7 dollars."
- ► Amateur response: "Dude, that is, like, so messed up. Haven't you heard of the axioms of probability?"
- ▶ Professional response: "I fully understand and respect your opinions. In fact, let's do some business. You sell me an A contract and a B contract for 1.50 each, and I sell you an A-or-B contract for 6.50."

- What if personal belief function doesn't satisfy axioms?
- Consider an A-contract (pays 10 if candidate A wins election) a B-contract (pays 10 dollars if candidate B wins) and an A-or-B contract (pays 10 if either A or B wins).
- ► Friend: "I'd say A-contract is worth 1 dollar, B-contract is worth 1 dollar, A-or-B contract is worth 7 dollars."
- ► Amateur response: "Dude, that is, like, so messed up. Haven't you heard of the axioms of probability?"
- ▶ Professional response: "I fully understand and respect your opinions. In fact, let's do some business. You sell me an A contract and a B contract for 1.50 each, and I sell you an A-or-B contract for 6.50."
- ► Friend: "Wow... you've beat by suggested price by 50 cents on each deal. Yes, sure! You're a great friend!"

- What if personal belief function doesn't satisfy axioms?
- Consider an A-contract (pays 10 if candidate A wins election) a B-contract (pays 10 dollars if candidate B wins) and an A-or-B contract (pays 10 if either A or B wins).
- ► Friend: "I'd say A-contract is worth 1 dollar, B-contract is worth 1 dollar, A-or-B contract is worth 7 dollars."
- ► Amateur response: "Dude, that is, like, so messed up. Haven't you heard of the axioms of probability?"
- ▶ Professional response: "I fully understand and respect your opinions. In fact, let's do some business. You sell me an A contract and a B contract for 1.50 each, and I sell you an A-or-B contract for 6.50."
- ► Friend: "Wow... you've beat by suggested price by 50 cents on each deal. Yes, sure! You're a great friend!"
- Axioms breakdowns are money-making opportunities.

▶ **Neurological:** When I think "it will rain tomorrow" the "truth-sensing" part of my brain exhibits 30 percent of its maximum electrical activity. Should have $P(A) \in [0,1]$, maybe P(S) = 1, not necessarily $P(A \cup B) = P(A) + P(B)$ when $A \cap B = \emptyset$.

- ▶ **Neurological:** When I think "it will rain tomorrow" the "truth-sensing" part of my brain exhibits 30 percent of its maximum electrical activity. Should have $P(A) \in [0,1]$, maybe P(S) = 1, not necessarily $P(A \cup B) = P(A) + P(B)$ when $A \cap B = \emptyset$.
- ► **Frequentist:** *P*(*A*) is the fraction of times *A* occurred during the previous (large number of) times we ran the experiment.

 Seems to satisfy axioms...

- ▶ **Neurological:** When I think "it will rain tomorrow" the "truth-sensing" part of my brain exhibits 30 percent of its maximum electrical activity. Should have $P(A) \in [0,1]$, maybe P(S) = 1, not necessarily $P(A \cup B) = P(A) + P(B)$ when $A \cap B = \emptyset$.
- ► **Frequentist:** *P*(*A*) is the fraction of times *A* occurred during the previous (large number of) times we ran the experiment. Seems to satisfy axioms...
- ► Market preference ("risk neutral probability"): P(A) is price of contract paying dollar if A occurs divided by price of contract paying dollar regardless. Seems to satisfy axioms, assuming no arbitrage, no bid-ask spread, complete market...

- ▶ **Neurological:** When I think "it will rain tomorrow" the "truth-sensing" part of my brain exhibits 30 percent of its maximum electrical activity. Should have $P(A) \in [0,1]$, maybe P(S) = 1, not necessarily $P(A \cup B) = P(A) + P(B)$ when $A \cap B = \emptyset$.
- ► **Frequentist:** *P*(*A*) is the fraction of times *A* occurred during the previous (large number of) times we ran the experiment. Seems to satisfy axioms...
- ▶ Market preference ("risk neutral probability"): P(A) is price of contract paying dollar if A occurs divided by price of contract paying dollar regardless. Seems to satisfy axioms, assuming no arbitrage, no bid-ask spread, complete market...
- ▶ **Personal belief:** *P*(*A*) is amount such that I'd be indifferent between contract paying 1 if *A* occurs and contract paying *P*(*A*) no matter what. Seems to satisfy axioms with some notion of utility units, strong assumption of "rationality"...

Outline

Axioms of probability

Consequences of axioms

Inclusion exclusion

Outline

Axioms of probability

Consequences of axioms

Inclusion exclusion

Intersection notation

▶ We will sometimes write AB to denote the event $A \cap B$.

▶ Can we show from the axioms that $P(A^c) = 1 - P(A)$?

- ▶ Can we show from the axioms that $P(A^c) = 1 P(A)$?
- ▶ Can we show from the axioms that if $A \subset B$ then $P(A) \leq P(B)$?

- ▶ Can we show from the axioms that $P(A^c) = 1 P(A)$?
- ▶ Can we show from the axioms that if $A \subset B$ then $P(A) \leq P(B)$?
- ► Can we show from the axioms that $P(A \cup B) = P(A) + P(B) P(AB)$?

- ▶ Can we show from the axioms that $P(A^c) = 1 P(A)$?
- ▶ Can we show from the axioms that if $A \subset B$ then $P(A) \leq P(B)$?
- ► Can we show from the axioms that $P(A \cup B) = P(A) + P(B) P(AB)$?
- ▶ Can we show from the axioms that $P(AB) \le P(A)$?

- ▶ Can we show from the axioms that $P(A^c) = 1 P(A)$?
- ▶ Can we show from the axioms that if $A \subset B$ then $P(A) \leq P(B)$?
- ► Can we show from the axioms that $P(A \cup B) = P(A) + P(B) P(AB)$?
- ▶ Can we show from the axioms that $P(AB) \le P(A)$?
- ▶ Can we show from the axioms that if S contains finitely many elements x_1, \ldots, x_k , then the values $(P(\{x_1\}), P(\{x_2\}), \ldots, P(\{x_k\}))$ determine the value of P(A) for any $A \subset S$?

- ▶ Can we show from the axioms that $P(A^c) = 1 P(A)$?
- ▶ Can we show from the axioms that if $A \subset B$ then $P(A) \leq P(B)$?
- ► Can we show from the axioms that $P(A \cup B) = P(A) + P(B) P(AB)$?
- ▶ Can we show from the axioms that $P(AB) \le P(A)$?
- ▶ Can we show from the axioms that if S contains finitely many elements x_1, \ldots, x_k , then the values $(P(\{x_1\}), P(\{x_2\}), \ldots, P(\{x_k\}))$ determine the value of P(A) for any $A \subset S$?
- ▶ What *k*-tuples of values are consistent with the axioms?

People are told "Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations."

- People are told "Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations."
- ▶ They are asked: Which is more probable?
 - Linda is a bank teller.
 - Linda is a bank teller and is active in the feminist movement.

- People are told "Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations."
- ▶ They are asked: Which is more probable?
 - Linda is a bank teller.
 - ▶ Linda is a bank teller and is active in the feminist movement.
- ▶ 85 percent chose the second option.

- People are told "Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations."
- ▶ They are asked: Which is more probable?
 - Linda is a bank teller.
 - Linda is a bank teller and is active in the feminist movement.
- ▶ 85 percent chose the second option.
- Could be correct using neurological/emotional definition. Or a "which story would you believe" interpretation (if witnesses offering more details are considered more credible).

- People are told "Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations."
- ▶ They are asked: Which is more probable?
 - Linda is a bank teller.
 - Linda is a bank teller and is active in the feminist movement.
- ▶ 85 percent chose the second option.
- Could be correct using neurological/emotional definition. Or a "which story would you believe" interpretation (if witnesses offering more details are considered more credible).
- But axioms of probability imply that second option cannot be more likely than first.

Outline

Axioms of probability

Consequences of axioms

Inclusion exclusion

Outline

Axioms of probability

Consequences of axioms

Inclusion exclusion

▶ Imagine we have *n* events, $E_1, E_2, ..., E_n$.

- ▶ Imagine we have n events, E_1, E_2, \ldots, E_n .
- ▶ How do we go about computing something like $P(E_1 \cup E_2 \cup ... \cup E_n)$?

- ▶ Imagine we have n events, E_1, E_2, \ldots, E_n .
- ▶ How do we go about computing something like $P(E_1 \cup E_2 \cup ... \cup E_n)$?
- ▶ It may be quite difficult, depending on the application.

- ▶ Imagine we have n events, E_1, E_2, \ldots, E_n .
- ▶ How do we go about computing something like $P(E_1 \cup E_2 \cup ... \cup E_n)$?
- ▶ It may be quite difficult, depending on the application.
- ▶ There are some situations in which computing $P(E_1 \cup E_2 \cup ... \cup E_n)$ is a priori difficult, but it is relatively easy to compute probabilities of *intersections* of any collection of E_i . That is, we can easily compute quantities like $P(E_1E_3E_7)$ or $P(E_2E_3E_6E_7E_8)$.

- ▶ Imagine we have n events, E_1, E_2, \ldots, E_n .
- ▶ How do we go about computing something like $P(E_1 \cup E_2 \cup ... \cup E_n)$?
- ▶ It may be quite difficult, depending on the application.
- ▶ There are some situations in which computing $P(E_1 \cup E_2 \cup ... \cup E_n)$ is a priori difficult, but it is relatively easy to compute probabilities of *intersections* of any collection of E_i . That is, we can easily compute quantities like $P(E_1E_3E_7)$ or $P(E_2E_3E_6E_7E_8)$.
- ▶ In these situations, the inclusion-exclusion rule helps us compute unions. It gives us a way to express $P(E_1 \cup E_2 \cup \ldots \cup E_n)$ in terms of these intersection probabilities.

► Can we show from the axioms that $P(A \cup B) = P(A) + P(B) - P(AB)$?

- ► Can we show from the axioms that $P(A \cup B) = P(A) + P(B) P(AB)$?
- ► How about $P(E \cup F \cup G) = P(E) + P(F) + P(G) P(EF) P(EG) P(FG) + P(EFG)$?

- ► Can we show from the axioms that $P(A \cup B) = P(A) + P(B) P(AB)$?
- ► How about $P(E \cup F \cup G) = P(E) + P(F) + P(G) P(EF) P(EG) P(FG) + P(EFG)$?
- More generally,

$$P(\bigcup_{i=1}^{n} E_{i}) = \sum_{i=1}^{n} P(E_{i}) - \sum_{i_{1} < i_{2}} P(E_{i_{1}} E_{i_{2}}) + \dots$$

$$+ (-1)^{(r+1)} \sum_{i_{1} < i_{2} < \dots < i_{r}} P(E_{i_{1}} E_{i_{2}} \dots E_{i_{r}})$$

$$+ \dots + (-1)^{n+1} P(E_{1} E_{2} \dots E_{n}).$$

- ► Can we show from the axioms that $P(A \cup B) = P(A) + P(B) P(AB)$?
- ► How about $P(E \cup F \cup G) = P(E) + P(F) + P(G) P(EF) P(EG) P(FG) + P(EFG)$?
- More generally,

$$P(\bigcup_{i=1}^{n} E_{i}) = \sum_{i=1}^{n} P(E_{i}) - \sum_{i_{1} < i_{2}} P(E_{i_{1}} E_{i_{2}}) + \dots$$

$$+ (-1)^{(r+1)} \sum_{i_{1} < i_{2} < \dots < i_{r}} P(E_{i_{1}} E_{i_{2}} \dots E_{i_{r}})$$

$$+ \dots + (-1)^{n+1} P(E_{1} E_{2} \dots E_{n}).$$

► The notation $\sum_{i_1 < i_2 < ... < i_r}$ means a sum over all of the $\binom{n}{r}$ subsets of size r of the set $\{1, 2, ..., n\}$.

► Consider a region of the Venn diagram contained in exactly m > 0 subsets. For example, if m = 3 and n = 8 we could consider the region $E_1E_2E_3^cE_4^cE_5E_6^cE_7^cE_8^c$.

- Consider a region of the Venn diagram contained in exactly m > 0 subsets. For example, if m = 3 and n = 8 we could consider the region $E_1E_2E_3^cE_4^cE_5E_6^cE_7^cE_8^c$.
- ▶ This region is contained in three single intersections (E_1 , E_2 , and E_5). It's contained in 3 double-intersections (E_1E_2 , E_1E_5 , and E_2E_5). It's contained in only 1 triple-intersection ($E_1E_2E_5$).

- ▶ Consider a region of the Venn diagram contained in exactly m > 0 subsets. For example, if m = 3 and n = 8 we could consider the region $E_1E_2E_3^cE_4^cE_5E_6^cE_7^cE_8^c$.
- ▶ This region is contained in three single intersections (E_1 , E_2 , and E_5). It's contained in 3 double-intersections (E_1E_2 , E_1E_5 , and E_2E_5). It's contained in only 1 triple-intersection ($E_1E_2E_5$).
- ▶ It is counted $\binom{m}{1} \binom{m}{2} + \binom{m}{3} + \ldots \pm \binom{m}{m}$ times in the inclusion exclusion sum.

- ▶ Consider a region of the Venn diagram contained in exactly m > 0 subsets. For example, if m = 3 and n = 8 we could consider the region $E_1E_2E_3^cE_4^cE_5E_6^cE_7^cE_8^c$.
- ▶ This region is contained in three single intersections (E_1 , E_2 , and E_5). It's contained in 3 double-intersections (E_1E_2 , E_1E_5 , and E_2E_5). It's contained in only 1 triple-intersection ($E_1E_2E_5$).
- ▶ It is counted $\binom{m}{1} \binom{m}{2} + \binom{m}{3} + \ldots \pm \binom{m}{m}$ times in the inclusion exclusion sum.
- How many is that?

- ▶ Consider a region of the Venn diagram contained in exactly m > 0 subsets. For example, if m = 3 and n = 8 we could consider the region $E_1E_2E_3^cE_4^cE_5E_6^cE_7^cE_8^c$.
- ▶ This region is contained in three single intersections (E_1 , E_2 , and E_5). It's contained in 3 double-intersections (E_1E_2 , E_1E_5 , and E_2E_5). It's contained in only 1 triple-intersection ($E_1E_2E_5$).
- ▶ It is counted $\binom{m}{1} \binom{m}{2} + \binom{m}{3} + \ldots \pm \binom{m}{m}$ times in the inclusion exclusion sum.
- How many is that?
- ▶ Answer: 1. (Follows from binomial expansion of $(1-1)^m$.)

- ▶ Consider a region of the Venn diagram contained in exactly m > 0 subsets. For example, if m = 3 and n = 8 we could consider the region $E_1E_2E_3^cE_4^cE_5E_6^cE_7^cE_8^c$.
- ▶ This region is contained in three single intersections (E_1 , E_2 , and E_5). It's contained in 3 double-intersections (E_1E_2 , E_1E_5 , and E_2E_5). It's contained in only 1 triple-intersection ($E_1E_2E_5$).
- ▶ It is counted $\binom{m}{1} \binom{m}{2} + \binom{m}{3} + \ldots \pm \binom{m}{m}$ times in the inclusion exclusion sum.
- How many is that?
- ▶ Answer: 1. (Follows from binomial expansion of $(1-1)^m$.)
- ▶ Thus each region in $E_1 \cup ... \cup E_n$ is counted exactly once in the inclusion exclusion sum, which implies the identity.

▶ *n* people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.
- What is $P(E_{i_1}E_{i_2}...E_{i_r})$?

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.
- What is $P(E_{i_1}E_{i_2}...E_{i_r})$?
- Answer: $\frac{(n-r)!}{n!}$.

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.
- What is $P(E_{i_1}E_{i_2}...E_{i_r})$?
- Answer: $\frac{(n-r)!}{n!}$.
- There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.
- What is $P(E_{i_1}E_{i_2}...E_{i_r})$?
- Answer: $\frac{(n-r)!}{n!}$.
- ► There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?
- ► Answer: $\frac{1}{r!}$.

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.
- What is $P(E_{i_1}E_{i_2}...E_{i_r})$?
- Answer: $\frac{(n-r)!}{n!}$.
- ► There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?
- ► Answer: $\frac{1}{r!}$.
- $P(\bigcup_{i=1}^n E_i) = 1 \frac{1}{2!} + \frac{1}{3!} \frac{1}{4!} + \dots \pm \frac{1}{n!}$

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.
- What is $P(E_{i_1}E_{i_2}...E_{i_r})$?
- ► Answer: $\frac{(n-r)!}{n!}$.
- ► There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?
- ▶ Answer: $\frac{1}{r!}$.
- $P(\bigcup_{i=1}^n E_i) = 1 \frac{1}{2!} + \frac{1}{3!} \frac{1}{4!} + \dots \pm \frac{1}{n!}$
- ▶ $1 P(\bigcup_{i=1}^{n} E_i) = 1 1 + \frac{1}{2!} \frac{1}{3!} + \frac{1}{4!} \dots \pm \frac{1}{n!} \approx 1/e \approx .36788$