18.440: Lecture 4

Axioms of probability and inclusion-exclusion

Scott Sheffield

MIT
Outline

Axioms of probability

Consequences of axioms

Inclusion exclusion
Outline

Axioms of probability

Consequences of axioms

Inclusion exclusion
Axioms of probability

- $P(A) \in [0, 1]$ for all $A \subset S$.

18.440 Lecture 4
Axioms of probability

- \(P(A) \in [0, 1] \) for all \(A \subset S \).
- \(P(S) = 1 \).
Axioms of probability

- $P(A) \in [0, 1]$ for all $A \subset S$.
- $P(S) = 1$.
- Finite additivity: $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$.
Axioms of probability

- $P(A) \in [0, 1]$ for all $A \subset S$.
- $P(S) = 1$.
- Finite additivity: $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$.
- Countable additivity: $P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$ if $E_i \cap E_j = \emptyset$ for each pair i and j.
Neurological: When I think “it will rain tomorrow” the “truth-sensing” part of my brain exhibits 30 percent of its maximum electrical activity.
> **Neurological:** When I think “it will rain tomorrow” the “truth-sensing” part of my brain exhibits 30 percent of its maximum electrical activity.

> **Frequentist:** $P(A)$ is the fraction of times A occurred during the previous (large number of) times we ran the experiment.
Neurological: When I think “it will rain tomorrow” the “truth-sensing” part of my brain exhibits 30 percent of its maximum electrical activity.

Frequentist: $P(A)$ is the fraction of times A occurred during the previous (large number of) times we ran the experiment.

Market preference ("risk neutral probability"): $P(A)$ is price of contract paying dollar if A occurs divided by price of contract paying dollar regardless.
Neurological: When I think “it will rain tomorrow” the “truth-sensing” part of my brain exhibits 30 percent of its maximum electrical activity.

Frequentist: $P(A)$ is the fraction of times A occurred during the previous (large number of) times we ran the experiment.

Market preference ("risk neutral probability"): $P(A)$ is price of contract paying dollar if A occurs divided by price of contract paying dollar regardless.

Personal belief: $P(A)$ is amount such that I'd be indifferent between contract paying 1 if A occurs and contract paying $P(A)$ no matter what.
What if personal belief function doesn’t satisfy axioms?
What if personal belief function doesn’t satisfy axioms?

Consider an A-contract (pays 10 if candidate A wins election) a B-contract (pays 10 dollars if candidate B wins) and an A-or-B contract (pays 10 if either A or B wins).
What if personal belief function doesn’t satisfy axioms?

Consider an A-contract (pays 10 if candidate A wins election) a B-contract (pays 10 dollars if candidate B wins) and an A-or-B contract (pays 10 if either A or B wins).

Friend: “I’d say A-contract is worth 1 dollar, B-contract is worth 1 dollar, A-or-B contract is worth 7 dollars.”
What if personal belief function doesn’t satisfy axioms?

Consider an A-contract (pays 10 if candidate A wins election) a B-contract (pays 10 dollars if candidate B wins) and an A-or-B contract (pays 10 if either A or B wins).

Friend: “I’d say A-contract is worth 1 dollar, B-contract is worth 1 dollar, A-or-B contract is worth 7 dollars.”

Amateur response: “Dude, that is, like, so messed up. Haven’t you heard of the axioms of probability?”
What if personal belief function doesn’t satisfy axioms?

Consider an \(A \)-contract (pays 10 if candidate \(A \) wins election) a \(B \)-contract (pays 10 dollars if candidate \(B \) wins) and an \(A \)-or-\(B \) contract (pays 10 if either \(A \) or \(B \) wins).

Friend: “I’d say \(A \)-contract is worth 1 dollar, \(B \)-contract is worth 1 dollar, \(A \)-or-\(B \) contract is worth 7 dollars.”

Amateur response: “Dude, that is, like, so messed up. Haven’t you heard of the axioms of probability?”

Professional response: “I fully understand and respect your opinions. In fact, let’s do some business. You sell me an \(A \) contract and a \(B \) contract for 1.50 each, and I sell you an \(A \)-or-\(B \) contract for 6.50.”
What if personal belief function doesn’t satisfy axioms?

Consider an A-contract (pays 10 if candidate A wins election) a B-contract (pays 10 dollars if candidate B wins) and an A-or-B contract (pays 10 if either A or B wins).

Friend: “I’d say A-contract is worth 1 dollar, B-contract is worth 1 dollar, A-or-B contract is worth 7 dollars.”

Amateur response: “Dude, that is, like, so messed up. Haven’t you heard of the axioms of probability?”

Professional response: “I fully understand and respect your opinions. In fact, let’s do some business. You sell me an A contract and a B contract for 1.50 each, and I sell you an A-or-B contract for 6.50.”

Friend: “Wow... you’ve beat by suggested price by 50 cents on each deal. Yes, sure! You’re a great friend!”
What if personal belief function doesn’t satisfy axioms?

Consider an A-contract (pays 10 if candidate A wins election) a B-contract (pays 10 dollars if candidate B wins) and an A-or-B contract (pays 10 if either A or B wins).

Friend: “I’d say A-contract is worth 1 dollar, B-contract is worth 1 dollar, A-or-B contract is worth 7 dollars.”

Amateur response: “Dude, that is, like, so messed up. Haven’t you heard of the axioms of probability?”

Professional response: “I fully understand and respect your opinions. In fact, let’s do some business. You sell me an A contract and a B contract for 1.50 each, and I sell you an A-or-B contract for 6.50.”

Friend: “Wow… you’ve beat by suggested price by 50 cents on each deal. Yes, sure! You’re a great friend!”

Axioms breakdowns are money-making opportunities.
Neurological: When I think “it will rain tomorrow” the “truth-sensing” part of my brain exhibits 30 percent of its maximum electrical activity. Should have $P(A) \in [0, 1]$, maybe $P(S) = 1$, not necessarily $P(A \cup B) = P(A) + P(B)$ when $A \cap B = \emptyset$.

Frequentist: $P(A)$ is the fraction of times A occurred during the previous (large number of) times we ran the experiment. Seems to satisfy axioms...

Market preference (“risk neutral probability”): $P(A)$ is price of contract paying dollar if A occurs divided by price of contract paying dollar regardless. Seems to satisfy axioms, assuming no arbitrage, no bid-ask spread, complete market...

Personal belief: $P(A)$ is amount such that I’d be indifferent between contract paying 1 if A occurs and contract paying $P(A)$ no matter what. Seems to satisfy axioms with some notion of utility units, strong assumption of “rationality”...
Neurological: When I think “it will rain tomorrow” the “truth-sensing” part of my brain exhibits 30 percent of its maximum electrical activity. Should have $P(A) \in [0, 1]$, maybe $P(S) = 1$, not necessarily $P(A \cup B) = P(A) + P(B)$ when $A \cap B = \emptyset$.

Frequentist: $P(A)$ is the fraction of times A occurred during the previous (large number of) times we ran the experiment. Seems to satisfy axioms...
Neurological: When I think “it will rain tomorrow” the “truth-sensing” part of my brain exhibits 30 percent of its maximum electrical activity. Should have $P(A) \in [0, 1]$, maybe $P(S) = 1$, not necessarily $P(A \cup B) = P(A) + P(B)$ when $A \cap B = \emptyset$.

Frequentist: $P(A)$ is the fraction of times A occurred during the previous (large number of) times we ran the experiment. Seems to satisfy axioms…

Market preference (“risk neutral probability”): $P(A)$ is price of contract paying dollar if A occurs divided by price of contract paying dollar regardless. Seems to satisfy axioms, assuming no arbitrage, no bid-ask spread, complete market…
Neurological: When I think “it will rain tomorrow” the “truth-sensing” part of my brain exhibits 30 percent of its maximum electrical activity. Should have $P(A) \in [0, 1]$, maybe $P(S) = 1$, not necessarily $P(A \cup B) = P(A) + P(B)$ when $A \cap B = \emptyset$.

Frequentist: $P(A)$ is the fraction of times A occurred during the previous (large number of) times we ran the experiment. Seems to satisfy axioms...

Market preference (“risk neutral probability”): $P(A)$ is price of contract paying dollar if A occurs divided by price of contract paying dollar regardless. Seems to satisfy axioms, assuming no arbitrage, no bid-ask spread, complete market...

Personal belief: $P(A)$ is amount such that I’d be indifferent between contract paying 1 if A occurs and contract paying $P(A)$ no matter what. Seems to satisfy axioms with some notion of utility units, strong assumption of “rationality”...
Outline

Axioms of probability

Consequences of axioms

Inclusion exclusion
Outline

Axioms of probability

Consequences of axioms

Inclusion exclusion
We will sometimes write AB to denote the event $A \cap B$.
Consequences of axioms

- Can we show from the axioms that $P(A^c) = 1 - P(A)$?
Consequences of axioms

- Can we show from the axioms that $P(A^c) = 1 - P(A)$?
- Can we show from the axioms that if $A \subset B$ then $P(A) \leq P(B)$?
Consequences of axioms

- Can we show from the axioms that $P(A^c) = 1 - P(A)$?
- Can we show from the axioms that if $A \subset B$ then $P(A) \leq P(B)$?
- Can we show from the axioms that $P(A \cup B) = P(A) + P(B) - P(AB)$?
Consequences of axioms

- Can we show from the axioms that $P(A^c) = 1 - P(A)$?
- Can we show from the axioms that if $A \subset B$ then $P(A) \leq P(B)$?
- Can we show from the axioms that $P(A \cup B) = P(A) + P(B) - P(AB)$?
- Can we show from the axioms that $P(AB) \leq P(A)$?
Consequences of axioms

- Can we show from the axioms that $P(A^c) = 1 - P(A)$?
- Can we show from the axioms that if $A \subset B$ then $P(A) \leq P(B)$?
- Can we show from the axioms that $P(A \cup B) = P(A) + P(B) - P(AB)$?
- Can we show from the axioms that $P(AB) \leq P(A)$?
- Can we show from the axioms that if S contains finitely many elements x_1, \ldots, x_k, then the values $(P(\{x_1\}), P(\{x_2\}), \ldots, P(\{x_k\}))$ determine the value of $P(A)$ for any $A \subset S$?
Consequences of axioms

- Can we show from the axioms that \(P(A^c) = 1 - P(A) \)?
- Can we show from the axioms that if \(A \subset B \) then \(P(A) \leq P(B) \)?
- Can we show from the axioms that \(P(A \cup B) = P(A) + P(B) - P(AB) \)?
- Can we show from the axioms that \(P(AB) \leq P(A) \)?
- Can we show from the axioms that if \(S \) contains finitely many elements \(x_1, \ldots, x_k \), then the values \(P(\{x_1\}), P(\{x_2\}), \ldots, P(\{x_k\}) \) determine the value of \(P(A) \) for any \(A \subset S \)?
- What \(k \)-tuples of values are consistent with the axioms?
People are told “Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.”
Famous 1982 Tversky-Kahneman study (see wikipedia)

- People are told “Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.”
- They are asked: Which is more probable?
 - Linda is a bank teller.
 - Linda is a bank teller and is active in the feminist movement.
People are told “Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.”

They are asked: Which is more probable?
- Linda is a bank teller.
- Linda is a bank teller and is active in the feminist movement.

85 percent chose the second option.
People are told “Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.”

They are asked: Which is more probable?

- Linda is a bank teller.
- Linda is a bank teller and is active in the feminist movement.

85 percent chose the second option.

Could be correct using neurological/emotional definition. Or a “which story would you believe” interpretation (if witnesses offering more details are considered more credible).
People are told “Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.”

They are asked: Which is more probable?

- Linda is a bank teller.
- Linda is a bank teller and is active in the feminist movement.

85 percent chose the second option.

Could be correct using neurological/emotional definition. Or a “which story would you believe” interpretation (if witnesses offering more details are considered more credible).

But axioms of probability imply that second option cannot be more likely than first.
Outline

Axioms of probability

Consequences of axioms

Inclusion exclusion
Outline

Axioms of probability

Consequences of axioms

Inclusion exclusion
Imagine we have n events, E_1, E_2, \ldots, E_n. How do we go about computing something like $P(E_1 \cup E_2 \cup \ldots \cup E_n)$? It may be quite difficult, depending on the application. There are some situations in which computing $P(E_1 \cup E_2 \cup \ldots \cup E_n)$ is a priori difficult, but it is relatively easy to compute probabilities of intersections of any collection of E_i. That is, we can easily compute quantities like $P(E_1 E_3 E_7)$ or $P(E_2 E_3 E_6 E_7 E_8)$. In these situations, the inclusion-exclusion rule helps us compute unions. It gives us a way to express $P(E_1 \cup E_2 \cup \ldots \cup E_n)$ in terms of these intersection probabilities.
Imagine we have \(n \) events, \(E_1, E_2, \ldots, E_n \).

How do we go about computing something like
\[P(E_1 \cup E_2 \cup \ldots \cup E_n) \]?

In these situations, the inclusion-exclusion rule helps us compute unions. It gives us a way to express
\[P(E_1 \cup E_2 \cup \ldots \cup E_n) \] in terms of these intersection probabilities.
Imagine we have n events, E_1, E_2, \ldots, E_n.

How do we go about computing something like $P(E_1 \cup E_2 \cup \ldots \cup E_n)$?

It may be quite difficult, depending on the application.
Imagine we have n events, E_1, E_2, \ldots, E_n.

How do we go about computing something like $P(E_1 \cup E_2 \cup \ldots \cup E_n)$?

It may be quite difficult, depending on the application.

There are some situations in which computing $P(E_1 \cup E_2 \cup \ldots \cup E_n)$ is a priori difficult, but it is relatively easy to compute probabilities of intersections of any collection of E_i. That is, we can easily compute quantities like $P(E_1 E_3 E_7)$ or $P(E_2 E_3 E_6 E_7 E_8)$.
Imagine we have \(n \) events, \(E_1, E_2, \ldots, E_n \).

How do we go about computing something like \(P(E_1 \cup E_2 \cup \ldots \cup E_n) \)?

It may be quite difficult, depending on the application.

There are some situations in which computing \(P(E_1 \cup E_2 \cup \ldots \cup E_n) \) is a priori difficult, but it is relatively easy to compute probabilities of intersections of any collection of \(E_i \). That is, we can easily compute quantities like \(P(E_1E_3E_7) \) or \(P(E_2E_3E_6E_7E_8) \).

In these situations, the inclusion-exclusion rule helps us compute unions. It gives us a way to express \(P(E_1 \cup E_2 \cup \ldots \cup E_n) \) in terms of these intersection probabilities.
Inclusion-exclusion identity

Can we show from the axioms that
\[P(A \cup B) = P(A) + P(B) - P(AB) \]?
Inclusion-exclusion identity

- Can we show from the axioms that
 \[P(A \cup B) = P(A) + P(B) - P(AB) \]?

- How about
 \[P(E \cup F \cup G) = P(E) + P(F) + P(G) - P(EF) - P(EG) - P(FG) + P(EFG) \]?
Inclusion-exclusion identity

- Can we show from the axioms that
 \[P(A \cup B) = P(A) + P(B) - P(AB) \]?

- How about
 \[P(E \cup F \cup G) =
 P(E) + P(F) + P(G) - P(EF) - P(EG) - P(FG) + P(EFG) \]?

- More generally,
 \[
P(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} P(E_i) - \sum_{i_1 < i_2} P(E_{i_1} E_{i_2}) + \ldots \\
+ (-1)^{r+1} \sum_{i_1 < i_2 < \ldots < i_r} P(E_{i_1} E_{i_2} \ldots E_{i_r}) \\
+ \ldots + (-1)^{n+1} P(E_1 E_2 \ldots E_n).
\]
Inclusion-exclusion identity

- Can we show from the axioms that
 \[P(A \cup B) = P(A) + P(B) - P(AB) \]?
- How about
 \[P(E \cup F \cup G) = P(E) + P(F) + P(G) - P(EF) - P(EG) - P(FG) + P(EFG) \]?
- More generally,
 \[
P(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} P(E_i) - \sum_{i_1 < i_2} P(E_{i_1}E_{i_2}) + \ldots + (-1)^{r+1} \sum_{i_1 < i_2 < \ldots < i_r} P(E_{i_1}E_{i_2} \ldots E_{i_r}) + \ldots + (-1)^{n+1} P(E_1E_2 \ldots E_n).
\]
- The notation \(\sum_{i_1 < i_2 < \ldots < i_r} \) means a sum over all of the \(\binom{n}{r} \) subsets of size \(r \) of the set \(\{1, 2, \ldots, n\} \).
Consider a region of the Venn diagram contained in exactly \(m > 0 \) subsets. For example, if \(m = 3 \) and \(n = 8 \) we could consider the region \(E_1 E_2 E_3^c E_4^c E_5 E_6^c E_7^c E_8^c \).
Consider a region of the Venn diagram contained in exactly $m > 0$ subsets. For example, if $m = 3$ and $n = 8$ we could consider the region $E_1 E_2 E_3^c E_4^c E_5 E_6^c E_7^c E_8^c$.

This region is contained in three single intersections (E_1, E_2, and E_5). It’s contained in 3 double-intersections ($E_1 E_2$, $E_1 E_5$, and $E_2 E_5$). It’s contained in only 1 triple-intersection ($E_1 E_2 E_5$).
Inclusion-exclusion proof idea

Consider a region of the Venn diagram contained in exactly \(m > 0 \) subsets. For example, if \(m = 3 \) and \(n = 8 \) we could consider the region \(E_1 E_2 E_3^c E_4^c E_5 E_6^c E_7^c E_8^c \).

This region is contained in three single intersections (\(E_1, E_2, \) and \(E_5 \)). It’s contained in 3 double-intersections (\(E_1 E_2, E_1 E_5, \) and \(E_2 E_5 \)). It’s contained in only 1 triple-intersection (\(E_1 E_2 E_5 \)).

It is counted \(\binom{m}{1} - \binom{m}{2} + \binom{m}{3} + \ldots \pm \binom{m}{m} \) times in the inclusion exclusion sum.
Inclusion-exclusion proof idea

Consider a region of the Venn diagram contained in exactly $m > 0$ subsets. For example, if $m = 3$ and $n = 8$ we could consider the region $E_1 E_2 E_3^c E_4^c E_5 E_6^c E_7 E_8^c$.

This region is contained in three single intersections (E_1, E_2, and E_5). It’s contained in 3 double-intersections ($E_1 E_2$, $E_1 E_5$, and $E_2 E_5$). It’s contained in only 1 triple-intersection ($E_1 E_2 E_5$).

It is counted $\binom{m}{1} - \binom{m}{2} + \binom{m}{3} + \ldots \pm \binom{m}{m}$ times in the inclusion exclusion sum.

How many is that?
Consider a region of the Venn diagram contained in exactly \(m > 0 \) subsets. For example, if \(m = 3 \) and \(n = 8 \) we could consider the region \(E_1 E_2 E_3^c E_4^c E_5 E_6^c E_7^c E_8^c \).

This region is contained in three single intersections (\(E_1, E_2, \) and \(E_5 \)). It’s contained in 3 double-intersections (\(E_1 E_2, E_1 E_5, \) and \(E_2 E_5 \)). It’s contained in only 1 triple-intersection (\(E_1 E_2 E_5 \)).

It is counted \(\binom{m}{1} - \binom{m}{2} + \binom{m}{3} + \ldots \pm \binom{m}{m} \) times in the inclusion exclusion sum.

How many is that?

Answer: 1. (Follows from binomial expansion of \((1 - 1)^m \).)
Consider a region of the Venn diagram contained in exactly \(m > 0 \) subsets. For example, if \(m = 3 \) and \(n = 8 \) we could consider the region \(E_1 E_2 E_3^c E_4^c E_5 E_6^c E_7 E_8^c \).

This region is contained in three single intersections (\(E_1, E_2, \) and \(E_5 \)). It’s contained in 3 double-intersections (\(E_1 E_2, E_1 E_5, \) and \(E_2 E_5 \)). It’s contained in only 1 triple-intersection (\(E_1 E_2 E_5 \)).

It is counted \(\binom{m}{1} - \binom{m}{2} + \binom{m}{3} + \ldots \pm \binom{m}{m} \) times in the inclusion exclusion sum.

How many is that?

Answer: 1. (Follows from binomial expansion of \((1 - 1)^m\).)

Thus each region in \(E_1 \cup \ldots \cup E_n \) is counted exactly once in the inclusion exclusion sum, which implies the identity.
Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.

- Inclusion-exclusion. Let E_i be the event that ith person gets own hat.

\[P(\bigcup_{i=1}^{n} E_i) = 1 - \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k!} \left(\begin{array}{c} n \end{array} \right) \left(\begin{array}{c} n \end{array} \right)^{n-k} \]

\[\approx 1 - \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k!} \approx \frac{1}{e} \approx 0.36788 \]
Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_i be the event that ith person gets own hat.
- What is $P(E_{i_1} E_{i_2} \ldots E_{i_r})$?
Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_i be the event that ith person gets own hat.
- What is $P(E_1 E_2 \ldots E_r)$?
- Answer: $\frac{(n-r)!}{n!}$.
Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_i be the event that ith person gets own hat.
- What is $P(E_1 E_2 \ldots E_{ir})$?
- Answer: $\frac{(n-r)!}{n!}$.
- There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum.
- What is $\binom{n}{r} \frac{(n-r)!}{n!}$?
Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_i be the event that ith person gets own hat.
 - What is $P(E_1 E_2 \ldots E_r)$?
 - Answer: $\frac{(n-r)!}{n!}$.
 - There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum.
 - What is $\binom{n}{r} \frac{(n-r)!}{n!}$?
 - Answer: $\frac{1}{r!}$.

Inclusion-exclusion sum:

$$1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \ldots - \frac{1}{n!} \approx 1/e \approx .36788$$
Famous hat problem

- \(n \) people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let \(E_i \) be the event that \(i \)th person gets own hat.
- What is \(P(E_1 E_2 \ldots E_r) \)?
- Answer: \(\frac{(n-r)!}{n!} \).
- There are \(\binom{n}{r} \) terms like that in the inclusion exclusion sum.
- What is \(\binom{n}{r} \frac{(n-r)!}{n!} \)?
- Answer: \(\frac{1}{r!} \).
- \(P(\bigcup_{i=1}^{n} E_i) = 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \ldots \pm \frac{1}{n!} \)
Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_i be the event that ith person gets own hat.
- What is $P(E_1 E_2 \ldots E_r)$?
- Answer: $\frac{(n-r)!}{n!}$.
- There are $\binom{n}{r}$ terms like that in the inclusion-exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?
- Answer: $\frac{1}{r!}$.
- $P(\bigcup_{i=1}^n E_i) = 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \ldots \pm \frac{1}{n!}$
- $1 - P(\bigcup_{i=1}^n E_i) = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \ldots \pm \frac{1}{n!} \approx 1/e \approx .36788$