18.440: Lecture 38 Review: practice problems

Scott Sheffield

MIT

18.440 Lecture 38

• Let X be a uniformly distributed random variable on [-1, 1].

Let X be a uniformly distributed random variable on [-1, 1].
 Compute the variance of X².

- Let X be a uniformly distributed random variable on [-1, 1].
 - Compute the variance of X^2 .
 - If X₁,..., X_n are independent copies of X, what is the probability density function for the smallest of the X_i

Order statistics — answers

 $Var[X^{2}] = E[X^{4}] - (E[X^{2}])^{2}$ $= \int_{-1}^{1} \frac{1}{2} x^{4} dx - (\int_{-1}^{1} \frac{1}{2} x^{2} dx)^{2} = \frac{1}{5} - \frac{1}{9} = \frac{4}{45}.$

Order statistics — answers

 $\operatorname{Var}[X^2] = E[X^4] - (E[X^2])^2$ $= \int_{-1}^1 \frac{1}{2} x^4 dx - (\int_{-1}^1 \frac{1}{2} x^2 dx)^2 = \frac{1}{5} - \frac{1}{9} = \frac{4}{45}.$

• Note that for $x \in [-1, 1]$ we have

$$P\{X > x\} = \int_{x}^{1} \frac{1}{2} dx = \frac{1-x}{2}.$$

If $x \in [-1, 1]$, then

$$P\{\min\{X_1,\ldots,X_n\} > x\}$$

= $P\{X_1 > x, X_2 > x, \ldots, X_n > x\} = (\frac{1-x}{2})^n.$

So the density function is

$$-\frac{\partial}{\partial x}\left(\frac{1-x}{2}\right)^n = \frac{n}{2}\left(\frac{1-x}{2}\right)^{n-1}.$$

18.440 Lecture 38

Suppose that X_i are independent copies of a random variable X. Let M_X(t) be the moment generating function for X. Compute the moment generating function for the average ∑ⁿ_{i=1} X_i/n in terms of M_X(t) and n.

• Write
$$Y = \sum_{i=1}^{n} X_i/n$$
. Then
 $M_Y(t) = E[e^{tY}] = E[e^{t\sum_{i=1}^{n} X_i/n}] = (M_X(t/n))^n$.

- Suppose X and Y are independent random variables, each equal to 1 with probability 1/3 and equal to 2 with probability 2/3.
 - Compute the entropy H(X).

- Suppose X and Y are independent random variables, each equal to 1 with probability 1/3 and equal to 2 with probability 2/3.
 - Compute the entropy H(X).
 - Compute H(X + Y).

- Suppose X and Y are independent random variables, each equal to 1 with probability 1/3 and equal to 2 with probability 2/3.
 - Compute the entropy H(X).
 - Compute H(X + Y).
 - ▶ Which is larger, H(X + Y) or H(X, Y)? Would the answer to this question be the same for any discrete random variables X and Y? Explain.

•
$$H(X) = \frac{1}{3}(-\log \frac{1}{3}) + \frac{2}{3}(-\log \frac{2}{3}).$$