18.440: Lecture 34 Entropy

Scott Sheffield

MIT

Entropy

Noiseless coding theory

Conditional entropy

Entropy

Noiseless coding theory

Conditional entropy

 Entropy is an important notion in thermodynamics, information theory, data compression, cryptography, etc.

- Entropy is an important notion in thermodynamics, information theory, data compression, cryptography, etc.
- Familiar on some level to everyone who has studied chemistry or statistical physics.

- Entropy is an important notion in thermodynamics, information theory, data compression, cryptography, etc.
- Familiar on some level to everyone who has studied chemistry or statistical physics.
- Kind of means amount or randomness or disorder.

- Entropy is an important notion in thermodynamics, information theory, data compression, cryptography, etc.
- Familiar on some level to everyone who has studied chemistry or statistical physics.
- Kind of means amount or randomness or disorder.
- But can we give a mathematical definition? In particular, how do we define the entropy of a random variable?

Suppose we toss a fair coin k times.

- Suppose we toss a fair coin k times.
- ► Then the state space S is the set of 2^k possible heads-tails sequences.

- Suppose we toss a fair coin k times.
- ► Then the state space S is the set of 2^k possible heads-tails sequences.
- If X is the random sequence (so X is a random variable), then for each x ∈ S we have P{X = x} = 2^{-k}.

- Suppose we toss a fair coin k times.
- ► Then the state space S is the set of 2^k possible heads-tails sequences.
- If X is the random sequence (so X is a random variable), then for each x ∈ S we have P{X = x} = 2^{-k}.
- In information theory it's quite common to use log to mean log₂ instead of log_e. We follow that convention in this lecture. In particular, this means that

$$\log P\{X=x\}=-k$$

for each $x \in S$.

- Suppose we toss a fair coin k times.
- ► Then the state space S is the set of 2^k possible heads-tails sequences.
- If X is the random sequence (so X is a random variable), then for each x ∈ S we have P{X = x} = 2^{-k}.
- In information theory it's quite common to use log to mean log₂ instead of log_e. We follow that convention in this lecture. In particular, this means that

$$\log P\{X=x\}=-k$$

for each $x \in S$.

Since there are 2^k values in S, it takes k "bits" to describe an element x ∈ S.

- Suppose we toss a fair coin k times.
- ► Then the state space S is the set of 2^k possible heads-tails sequences.
- If X is the random sequence (so X is a random variable), then for each x ∈ S we have P{X = x} = 2^{-k}.
- In information theory it's quite common to use log to mean log₂ instead of log_e. We follow that convention in this lecture. In particular, this means that

$$\log P\{X=x\}=-k$$

for each $x \in S$.

- Since there are 2^k values in S, it takes k "bits" to describe an element x ∈ S.
- ► Intuitively, could say that when we learn that X = x, we have learned k = -log P{X = x} "bits of information".

 Shannon: famous MIT student/faculty member, wrote The Mathematical Theory of Communication in 1948.

Shannon entropy

- Shannon: famous MIT student/faculty member, wrote The Mathematical Theory of Communication in 1948.
- Goal is to define a notion of how much we "expect to learn" from a random variable or "how many bits of information a random variable contains" that makes sense for general experiments (which may not have anything to do with coins).

Shannon entropy

- Shannon: famous MIT student/faculty member, wrote The Mathematical Theory of Communication in 1948.
- Goal is to define a notion of how much we "expect to learn" from a random variable or "how many bits of information a random variable contains" that makes sense for general experiments (which may not have anything to do with coins).
- If a random variable X takes values x₁, x₂,..., x_n with positive probabilities p₁, p₂,..., p_n then we define the **entropy** of X by

$$H(X) = \sum_{i=1}^{n} p_i(-\log p_i) = -\sum_{i=1}^{n} p_i \log p_i.$$

Shannon entropy

- Shannon: famous MIT student/faculty member, wrote The Mathematical Theory of Communication in 1948.
- Goal is to define a notion of how much we "expect to learn" from a random variable or "how many bits of information a random variable contains" that makes sense for general experiments (which may not have anything to do with coins).
- If a random variable X takes values x₁, x₂,..., x_n with positive probabilities p₁, p₂,..., p_n then we define the **entropy** of X by

$$H(X) = \sum_{i=1}^{n} p_i(-\log p_i) = -\sum_{i=1}^{n} p_i \log p_i.$$

► This can be interpreted as the expectation of (-log p_i). The value (-log p_i) is the "amount of surprise" when we see x_i.

Twenty questions with Harry

Harry always thinks of one of the following animals:

X	$P{X = x}$	$-\log P\{X=x\}$
Dog	1/4	2
Cat	1/4	2
Cow	1/8	3
Pig	1/16	4
Squirrel	1/16	4
Mouse	1/16	4
Owl	1/16	4
Sloth	1/32	5
Hippo	1/32	5
Yak	1/32	5
Zebra	1/64	6
Rhino	1/64	6

Twenty questions with Harry

Harry always thinks of one of the following animals:

$P\{X=x\}$	$-\log P\{X=x\}$
1/4	2
1/4	2
1/8	3
1/16	4
1/16	4
1/16	4
1/16	4
1/32	5
1/32	5
1/32	5
1/64	6
1/64	6
	1/4 1/4 1/8 1/16 1/16 1/16 1/16 1/32 1/32 1/32 1/32 1/64

• Can learn animal with $H(X) = \frac{47}{16}$ questions on average.

$$H(X) = \sum_{i=1}^{n} p_i(-\log p_i) = -\sum_{i=1}^{n} p_i \log p_i.$$

$$H(X) = \sum_{i=1}^{n} p_i(-\log p_i) = -\sum_{i=1}^{n} p_i \log p_i.$$

• If X takes one value with probability 1, what is H(X)?

$$H(X) = \sum_{i=1}^{n} p_i(-\log p_i) = -\sum_{i=1}^{n} p_i \log p_i.$$

- If X takes one value with probability 1, what is H(X)?
- If X takes k values with equal probability, what is H(X)?

$$H(X) = \sum_{i=1}^{n} p_i(-\log p_i) = -\sum_{i=1}^{n} p_i \log p_i.$$

- If X takes one value with probability 1, what is H(X)?
- If X takes k values with equal probability, what is H(X)?
- What is H(X) if X is a geometric random variable with parameter p = 1/2?

Entropy

Noiseless coding theory

Conditional entropy

Entropy

Noiseless coding theory

Conditional entropy

▶ If *X* takes four values *A*, *B*, *C*, *D* we can code them by:

 $A \leftrightarrow 00$ $B \leftrightarrow 01$ $C \leftrightarrow 10$ $D \leftrightarrow 11$

▶ If X takes four values A, B, C, D we can code them by:

 $A \leftrightarrow 00$ $B \leftrightarrow 01$ $C \leftrightarrow 10$ $D \leftrightarrow 11$ Or by $A \leftrightarrow 0$ $B \leftrightarrow 10$ $C \leftrightarrow 110$ $D \leftrightarrow 111$

▶ If X takes four values A, B, C, D we can code them by:

 $A \leftrightarrow 00$ $B \leftrightarrow 01$ $C \leftrightarrow 10$ $D \leftrightarrow 11$ Or by $A \leftrightarrow 0$ $B \leftrightarrow 10$ $C \leftrightarrow 110$ $D \leftrightarrow 111$

No sequence in code is an extension of another.

▶ If X takes four values A, B, C, D we can code them by:

 $A \leftrightarrow 00$ $B \leftrightarrow 01$ $C \leftrightarrow 10$ $D \leftrightarrow 11$ Or by $A \leftrightarrow 0$ $B \leftrightarrow 10$ $C \leftrightarrow 110$ $D \leftrightarrow 111$

- No sequence in code is an extension of another.
- What does 100111110010 spell?

▶ If X takes four values A, B, C, D we can code them by:

 $A \leftrightarrow 00$ $B \leftrightarrow 01$ $C \leftrightarrow 10$ $D \leftrightarrow 11$ $A \leftrightarrow 0$ $B \leftrightarrow 10$ $C \leftrightarrow 110$ $D \leftrightarrow 111$

- No sequence in code is an extension of another.
- What does 100111110010 spell?
- A coding scheme is equivalent to a twenty questions strategy.

18.440 Lecture 34

Or by

Noiseless coding theorem: Expected number of questions you need is at least the entropy.

- Noiseless coding theorem: Expected number of questions you need is at least the entropy.
- Precisely, let X take values x₁,..., x_N with probabilities p(x₁),..., p(x_N). Then if a valid coding of X assigns n_i bits to x_i, we have

$$\sum_{i=1}^N n_i p(x_i) \geq H(X) = -\sum_{i=1}^N p(x_i) \log p(x_i).$$

- Noiseless coding theorem: Expected number of questions you need is at least the entropy.
- Precisely, let X take values x₁,..., x_N with probabilities p(x₁),..., p(x_N). Then if a valid coding of X assigns n_i bits to x_i, we have

$$\sum_{i=1}^N n_i p(x_i) \geq H(X) = -\sum_{i=1}^N p(x_i) \log p(x_i).$$

Data compression: suppose we have a sequence of n independent instances of X, called X₁, X₂,..., X_n. Do there exist encoding schemes such that the expected number of bits required to encode the entire sequence is about H(X)n (assuming n is sufficiently large)?

- Noiseless coding theorem: Expected number of questions you need is at least the entropy.
- Precisely, let X take values x₁,..., x_N with probabilities p(x₁),..., p(x_N). Then if a valid coding of X assigns n_i bits to x_i, we have

$$\sum_{i=1}^N n_i p(x_i) \geq H(X) = -\sum_{i=1}^N p(x_i) \log p(x_i).$$

- Data compression: suppose we have a sequence of n independent instances of X, called X₁, X₂,..., X_n. Do there exist encoding schemes such that the expected number of bits required to encode the entire sequence is about H(X)n (assuming n is sufficiently large)?
- Yes, but takes some thought to see why.

Entropy

Noiseless coding theory

Conditional entropy

Entropy

Noiseless coding theory

Conditional entropy

► Consider random variables X, Y with joint mass function p(x_i, y_j) = P{X = x_i, Y = y_j}.

- ► Consider random variables X, Y with joint mass function p(x_i, y_j) = P{X = x_i, Y = y_j}.
- Then we write

$$H(X, Y) = -\sum_{i} \sum_{j} p(x_i, y_j) \log p(x_i, y_i).$$

- ► Consider random variables X, Y with joint mass function p(x_i, y_j) = P{X = x_i, Y = y_j}.
- Then we write

$$H(X,Y) = -\sum_{i}\sum_{j}p(x_i,y_j)\log p(x_i,y_i).$$

► H(X, Y) is just the entropy of the pair (X, Y) (viewed as a random variable itself).

- ► Consider random variables X, Y with joint mass function p(x_i, y_j) = P{X = x_i, Y = y_j}.
- Then we write

$$H(X, Y) = -\sum_{i} \sum_{j} p(x_i, y_j) \log p(x_i, y_i).$$

- ► H(X, Y) is just the entropy of the pair (X, Y) (viewed as a random variable itself).
- Claim: if X and Y are independent, then

$$H(X,Y)=H(X)+H(Y).$$

Why is that?

18.440 Lecture 34

► Let's again consider random variables X, Y with joint mass function p(x_i, y_j) = P{X = x_i, Y = y_j} and write

$$H(X,Y) = -\sum_{i}\sum_{j}p(x_i,y_j)\log p(x_i,y_i).$$

▶ Let's again consider random variables X, Y with joint mass function p(x_i, y_j) = P{X = x_i, Y = y_j} and write

$$H(X,Y) = -\sum_{i}\sum_{j}p(x_i,y_j)\log p(x_i,y_i).$$

But now let's not assume they are independent.

▶ Let's again consider random variables X, Y with joint mass function p(x_i, y_j) = P{X = x_i, Y = y_j} and write

$$H(X,Y) = -\sum_{i}\sum_{j}p(x_i,y_j)\log p(x_i,y_i).$$

- But now let's not assume they are independent.
- We can define a **conditional entropy** of X given $Y = y_j$ by

$$H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j).$$

▶ Let's again consider random variables X, Y with joint mass function p(x_i, y_j) = P{X = x_i, Y = y_j} and write

$$H(X,Y) = -\sum_{i}\sum_{j}p(x_i,y_j)\log p(x_i,y_i).$$

- But now let's not assume they are independent.
- We can define a **conditional entropy** of X given $Y = y_j$ by

$$H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j).$$

► This is just the entropy of the conditional distribution. Recall that p(x_i|y_j) = P{X = x_i|Y = y_j}.

▶ Let's again consider random variables X, Y with joint mass function p(x_i, y_j) = P{X = x_i, Y = y_j} and write

$$H(X,Y) = -\sum_{i}\sum_{j}p(x_i,y_j)\log p(x_i,y_i).$$

- But now let's not assume they are independent.
- We can define a **conditional entropy** of X given $Y = y_j$ by

$$H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j).$$

- ► This is just the entropy of the conditional distribution. Recall that p(x_i|y_j) = P{X = x_i|Y = y_j}.
- We similarly define H_Y(X) = ∑_j H_{Y=yj}(X)p_Y(y_j). This is the *expected* amount of conditional entropy that there will be in Y after we have observed X.

18.440 Lecture 34

• Definitions:
$$H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j)$$
 and $H_Y(X) = \sum_j H_{Y=y_j}(X) p_Y(y_j)$.

- Definitions: $H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j)$ and $H_Y(X) = \sum_j H_{Y=y_j}(X) p_Y(y_j)$.
- Important property one: $H(X, Y) = H(Y) + H_Y(X)$.

- Definitions: $H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j)$ and $H_Y(X) = \sum_j H_{Y=y_j}(X) p_Y(y_j)$.
- Important property one: $H(X, Y) = H(Y) + H_Y(X)$.
- In words, the expected amount of information we learn when discovering (X, Y) is equal to expected amount we learn when discovering Y plus expected amount when we subsequently discover X (given our knowledge of Y).

- Definitions: $H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j)$ and $H_Y(X) = \sum_j H_{Y=y_j}(X) p_Y(y_j)$.
- Important property one: $H(X, Y) = H(Y) + H_Y(X)$.
- In words, the expected amount of information we learn when discovering (X, Y) is equal to expected amount we learn when discovering Y plus expected amount when we subsequently discover X (given our knowledge of Y).
- ► To prove this property, recall that $p(x_i, y_j) = p_Y(y_j)p(x_i|y_j)$.

- Definitions: $H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j)$ and $H_Y(X) = \sum_j H_{Y=y_j}(X) p_Y(y_j)$.
- Important property one: $H(X, Y) = H(Y) + H_Y(X)$.
- In words, the expected amount of information we learn when discovering (X, Y) is equal to expected amount we learn when discovering Y plus expected amount when we subsequently discover X (given our knowledge of Y).
- ► To prove this property, recall that $p(x_i, y_j) = p_Y(y_j)p(x_i|y_j)$.

► Thus,
$$H(X, Y) = -\sum_i \sum_j p(x_i, y_j) \log p(x_i, y_j) =$$

 $-\sum_i \sum_j p_Y(y_j) p(x_i|y_j) [\log p_Y(y_j) + \log p(x_i|y_j)] =$
 $-\sum_j p_Y(y_j) \log p_Y(y_j) \sum_i p(x_i|y_j) -$
 $\sum_j p_Y(y_j) \sum_i p(x_i|y_j) \log p(x_i|y_j) = H(Y) + H_Y(X).$

• Definitions: $H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j)$ and $H_Y(X) = \sum_j H_{Y=y_j}(X) p_Y(y_j)$.

- Definitions: $H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j)$ and $H_Y(X) = \sum_j H_{Y=y_j}(X) p_Y(y_j)$.
- ► Important property two: H_Y(X) ≤ H(X) with equality if and only if X and Y are independent.

- Definitions: $H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j)$ and $H_Y(X) = \sum_j H_{Y=y_j}(X) p_Y(y_j)$.
- ► Important property two: H_Y(X) ≤ H(X) with equality if and only if X and Y are independent.
- In words, the expected amount of information we learn when discovering X after having discovered Y can't be more than the expected amount of information we would learn when discovering X before knowing anything about Y.

- Definitions: $H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j)$ and $H_Y(X) = \sum_j H_{Y=y_j}(X) p_Y(y_j)$.
- ► Important property two: H_Y(X) ≤ H(X) with equality if and only if X and Y are independent.
- In words, the expected amount of information we learn when discovering X after having discovered Y can't be more than the expected amount of information we would learn when discovering X before knowing anything about Y.
- Proof: note that $\mathcal{E}(p_1, p_2, \dots, p_n) := -\sum p_i \log p_i$ is concave.

- Definitions: $H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j)$ and $H_Y(X) = \sum_j H_{Y=y_j}(X) p_Y(y_j)$.
- ► Important property two: H_Y(X) ≤ H(X) with equality if and only if X and Y are independent.
- In words, the expected amount of information we learn when discovering X after having discovered Y can't be more than the expected amount of information we would learn when discovering X before knowing anything about Y.
- Proof: note that $\mathcal{E}(p_1, p_2, \dots, p_n) := -\sum p_i \log p_i$ is concave.
- The vector v = {p_X(x₁), p_X(x₂),..., p_X(x_n)} is a weighted average of vectors v_j := {p_X(x₁|y_j), p_X(x₂|y_j),..., p_X(x_n|y_j)} as j ranges over possible values. By (vector version of) Jensen's inequality, H(X) = E(v) = E(∑p_Y(y_i)v_i) ≥ ∑p_Y(y_i)E(v_i) = H_Y(X).