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What is entropy?

I Entropy is an important notion in thermodynamics,
information theory, data compression, cryptography, etc.

I Familiar on some level to everyone who has studied chemistry
or statistical physics.

I Kind of means amount or randomness or disorder.

I But can we give a mathematical definition? In particular, how
do we define the entropy of a random variable?
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Information

I Suppose we toss a fair coin k times.

I Then the state space S is the set of 2k possible heads-tails
sequences.

I If X is the random sequence (so X is a random variable), then
for each x ∈ S we have P{X = x} = 2−k .

I In information theory it’s quite common to use log to mean
log2 instead of loge . We follow that convention in this lecture.
In particular, this means that

logP{X = x} = −k

for each x ∈ S .

I Since there are 2k values in S , it takes k “bits” to describe an
element x ∈ S .

I Intuitively, could say that when we learn that X = x , we have
learned k = − logP{X = x} “bits of information”.
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Shannon entropy

I Shannon: famous MIT student/faculty member, wrote The
Mathematical Theory of Communication in 1948.

I Goal is to define a notion of how much we “expect to learn”
from a random variable or “how many bits of information a
random variable contains” that makes sense for general
experiments (which may not have anything to do with coins).

I If a random variable X takes values x1, x2, . . . , xn with positive
probabilities p1, p2, . . . , pn then we define the entropy of X by

H(X ) =
n∑

i=1

pi (− log pi ) = −
n∑

i=1

pi log pi .

I This can be interpreted as the expectation of (− log pi ). The
value (− log pi ) is the “amount of surprise” when we see xi .
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Twenty questions with Harry

I Harry always thinks of one of the following animals:

x P{X = x} − logP{X = x}
Dog 1/4 2
Cat 1/4 2
Cow 1/8 3
Pig 1/16 4

Squirrel 1/16 4
Mouse 1/16 4

Owl 1/16 4
Sloth 1/32 5
Hippo 1/32 5

Yak 1/32 5
Zebra 1/64 6
Rhino 1/64 6

I Can learn animal with H(X ) = 47
16 questions on average.
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Other examples

I Again, if a random variable X takes the values x1, x2, . . . , xn
with positive probabilities p1, p2, . . . , pn then we define the
entropy of X by

H(X ) =
n∑

i=1

pi (− log pi ) = −
n∑

i=1

pi log pi .

I If X takes one value with probability 1, what is H(X )?

I If X takes k values with equal probability, what is H(X )?

I What is H(X ) if X is a geometric random variable with
parameter p = 1/2?
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Coding values by bit sequences

I If X takes four values A,B,C ,D we can code them by:

A↔ 00

B ↔ 01

C ↔ 10

D ↔ 11

I Or by
A↔ 0

B ↔ 10

C ↔ 110

D ↔ 111

I No sequence in code is an extension of another.
I What does 100111110010 spell?
I A coding scheme is equivalent to a twenty questions strategy.
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Twenty questions theorem

I Noiseless coding theorem: Expected number of questions
you need is at least the entropy.

I Precisely, let X take values x1, . . . , xN with probabilities
p(x1), . . . , p(xN). Then if a valid coding of X assigns ni bits
to xi , we have

N∑
i=1

nip(xi ) ≥ H(X ) = −
N∑
i=1

p(xi ) log p(xi ).

I Data compression: suppose we have a sequence of n
independent instances of X , called X1,X2, . . . ,Xn. Do there
exist encoding schemes such that the expected number of bits
required to encode the entire sequence is about H(X )n
(assuming n is sufficiently large)?

I Yes, but takes some thought to see why.
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Entropy for a pair of random variables

I Consider random variables X ,Y with joint mass function
p(xi , yj) = P{X = xi ,Y = yj}.

I Then we write

H(X ,Y ) = −
∑
i

∑
j

p(xi , yj) log p(xi , yi ).

I H(X ,Y ) is just the entropy of the pair (X ,Y ) (viewed as a
random variable itself).

I Claim: if X and Y are independent, then

H(X ,Y ) = H(X ) + H(Y ).

Why is that?
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Conditional entropy

I Let’s again consider random variables X ,Y with joint mass
function p(xi , yj) = P{X = xi ,Y = yj} and write

H(X ,Y ) = −
∑
i

∑
j

p(xi , yj) log p(xi , yi ).

I But now let’s not assume they are independent.

I We can define a conditional entropy of X given Y = yj by

HY=yj (X ) = −
∑
i

p(xi |yj) log p(xi |yj).

I This is just the entropy of the conditional distribution. Recall
that p(xi |yj) = P{X = xi |Y = yj}.

I We similarly define HY (X ) =
∑

j HY=yj (X )pY (yj). This is
the expected amount of conditional entropy that there will be
in Y after we have observed X .
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Properties of conditional entropy

I Definitions: HY=yj (X ) = −
∑

i p(xi |yj) log p(xi |yj) and
HY (X ) =

∑
j HY=yj (X )pY (yj).

I Important property one: H(X ,Y ) = H(Y ) + HY (X ).

I In words, the expected amount of information we learn when
discovering (X ,Y ) is equal to expected amount we learn when
discovering Y plus expected amount when we subsequently
discover X (given our knowledge of Y ).

I To prove this property, recall that p(xi , yj) = pY (yj)p(xi |yj).

I Thus, H(X ,Y ) = −
∑

i

∑
j p(xi , yj) log p(xi , yj) =

−
∑

i

∑
j pY (yj)p(xi |yj)[log pY (yj) + log p(xi |yj)] =

−
∑

j pY (yj) log pY (yj)
∑

i p(xi |yj)−∑
j pY (yj)

∑
i p(xi |yj) log p(xi |yj) = H(Y ) + HY (X ).
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discovering (X ,Y ) is equal to expected amount we learn when
discovering Y plus expected amount when we subsequently
discover X (given our knowledge of Y ).

I To prove this property, recall that p(xi , yj) = pY (yj)p(xi |yj).

I Thus, H(X ,Y ) = −
∑
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I Definitions: HY=yj (X ) = −
∑

i p(xi |yj) log p(xi |yj) and
HY (X ) =

∑
j HY=yj (X )pY (yj).

I Important property two: HY (X ) ≤ H(X ) with equality if
and only if X and Y are independent.

I In words, the expected amount of information we learn when
discovering X after having discovered Y can’t be more than
the expected amount of information we would learn when
discovering X before knowing anything about Y .

I Proof: note that E(p1, p2, . . . , pn) := −
∑

pi log pi is concave.

I The vector v = {pX (x1), pX (x2), . . . , pX (xn)} is a weighted
average of vectors vj := {pX (x1|yj), pX (x2|yj), . . . , pX (xn|yj)}
as j ranges over possible values. By (vector version of)
Jensen’s inequality,
H(X ) = E(v) = E(

∑
pY (yj)vj) ≥

∑
pY (yj)E(vj) = HY (X ).
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