Outline

Tossing coins

Normal random variables

Special case of central limit theorem
Outline

Tossing coins

Normal random variables

Special case of central limit theorem
Suppose we toss a million fair coins. How many heads will we get?
Tossing coins

- Suppose we toss a million fair coins. How many heads will we get?
- About half a million, yes, but how close to that? Will we be off by 10 or 1000 or 100,000?
Suppose we toss a million fair coins. How many heads will we get?
About half a million, yes, but how close to that? Will we be off by 10 or 1000 or 100,000?
How can we describe the error?
Suppose we toss a million fair coins. How many heads will we get?

About half a million, yes, but how close to that? Will we be off by 10 or 1000 or 100,000?

How can we describe the error?

Let’s try this out.
Tossing coins

▶ Toss \(n \) coins. What is probability to see \(k \) heads?

\[
\text{Answer: } 2^n - k \binom{n}{k}.
\]

▶ Let's plot this for a few values of \(n \).

▶ Seems to look like it's converging to a curve.

▶ If we replace fair coin with \(p \) coin, what's probability to see \(k \) heads.

\[
\text{Answer: } p^k (1-p)^{n-k} \binom{n}{k}.
\]

▶ Let's plot this for \(p = \frac{2}{3} \) and some values of \(n \).

What does limit shape seem to be?
Tossing coins

- Toss \(n \) coins. What is probability to see \(k \) heads?
- Answer: \(2^{-k} \binom{n}{k} \).
Toss n coins. What is probability to see k heads?

Answer: $2^{-k} \binom{n}{k}$.

Let’s plot this for a few values of n.

Tossing coins

- Toss \(n \) coins. What is probability to see \(k \) heads?
- Answer: \(2^{-k} \binom{n}{k} \).
- Let’s plot this for a few values of \(n \).
- Seems to look like it’s converging to a curve.
Tossing coins

- Toss \(n \) coins. What is probability to see \(k \) heads?
- Answer: \(2^{-k} \binom{n}{k} \).
- Let’s plot this for a few values of \(n \).
- Seems to look like it’s converging to a curve.
- If we replace fair coin with \(p \) coin, what’s probability to see \(k \) heads.
Tossing coins

- Toss \(n \) coins. What is probability to see \(k \) heads?
- Answer: \(2^{-k} \binom{n}{k} \).
- Let’s plot this for a few values of \(n \).
- Seems to look like it’s converging to a curve.
- If we replace fair coin with \(p \) coin, what’s probability to see \(k \) heads.
- Answer: \(p^k (1 - p)^{n-k} \binom{n}{k} \).
Tossing coins

- Toss \(n \) coins. What is probability to see \(k \) heads?
- Answer: \(2^{-k} \binom{n}{k} \).
- Let’s plot this for a few values of \(n \).
- Seems to look like it’s converging to a curve.
- If we replace fair coin with \(p \) coin, what’s probability to see \(k \) heads.
- Answer: \(p^k (1 - p)^{n-k} \binom{n}{k} \).
- Let’s plot this for \(p = 2/3 \) and some values of \(n \).
Tossing coins

- Toss \(n \) coins. What is probability to see \(k \) heads?
- Answer: \(2^{-k} \binom{n}{k} \).
- Let’s plot this for a few values of \(n \).
- Seems to look like it’s converging to a curve.
- If we replace fair coin with \(p \) coin, what’s probability to see \(k \) heads.
- Answer: \(p^k(1 - p)^{n-k} \binom{n}{k} \).
- Let’s plot this for \(p = 2/3 \) and some values of \(n \).
- What does limit shape seem to be?
Outline

Tossing coins

Normal random variables

Special case of central limit theorem
Outline

- Tossing coins
- Normal random variables
- Special case of central limit theorem
Say X is a (standard) **normal random variable** if $f_X(x) = f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$.

Clearly f is always non-negative for real values of x, but how do we show that $\int_{-\infty}^{\infty} f(x) \, dx = 1$? Looks kind of tricky.

Happens to be a nice trick. Write $I = \int_{-\infty}^{\infty} e^{-x^2/2} \, dx$. Then try to compute I^2 as a two dimensional integral.

That is, write $I^2 = \int_{-\infty}^{\infty} e^{-x^2/2} \, dx \int_{-\infty}^{\infty} e^{-y^2/2} \, dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2/2} \, dx \, dy$.

Then switch to polar coordinates.

$I^2 = \int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^2/2} \, r \, d\theta \, dr = 2\pi \int_{0}^{\infty} re^{-r^2/2} \, dr = -2\pi e^{-r^2/2} \bigg|_{0}^{\infty}$, so $I = \sqrt{2\pi}$.
Standard normal random variable

- Say X is a (standard) **normal random variable** if
 \[f_X(x) = f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]
- Clearly f is always non-negative for real values of x, but how do we show that $\int_{-\infty}^{\infty} f(x)dx = 1$?
Say X is a (standard) **normal random variable** if
\[f_X(x) = f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]
Clearly f is always non-negative for real values of x, but how do we show that $\int_{-\infty}^{\infty} f(x)dx = 1$?
Looks kind of tricky.
Say X is a (standard) **normal random variable** if

$$f_X(x) = f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$$

Clearly f is always non-negative for real values of x, but how do we show that $\int_{-\infty}^{\infty} f(x) dx = 1$?

Looks kind of tricky.

Happens to be a nice trick. Write $I = \int_{-\infty}^{\infty} e^{-x^2/2} dx$. Then try to compute I^2 as a two dimensional integral.

\[I^2 = \left(\int_{-\infty}^{\infty} e^{-x^2/2} dx \right) \left(\int_{-\infty}^{\infty} e^{-y^2/2} dy \right) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2/2 - y^2/2} dxdy. \]

Switch to polar coordinates:

$$I^2 = \int_{0}^{\infty} \int_{0}^{2\pi} re^{-r^2/2} d\theta dr = 2\pi \int_{0}^{\infty} r e^{-r^2/2} dr.$$

Hence

$$I^2 = 2\pi \int_{0}^{\infty} r e^{-r^2/2} dr = \left. -2\pi e^{-r^2/2} \right|_{0}^{\infty} = 2\pi.$$

Thus $I = \sqrt{2\pi}$.

\[\]
Say X is a (standard) **normal random variable** if

\[f_X(x) = f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]

Clearly f is always non-negative for real values of x, but how do we show that $\int_{-\infty}^{\infty} f(x) dx = 1$?

Looks kind of tricky.

Happens to be a nice trick. Write $I = \int_{-\infty}^{\infty} e^{-x^2/2} dx$. Then try to compute I^2 as a two dimensional integral.

That is, write

\[
I^2 = \int_{-\infty}^{\infty} e^{-x^2/2} dx \int_{-\infty}^{\infty} e^{-y^2/2} dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2/2} dx e^{-y^2/2} dy.
\]
Say X is a (standard) **normal random variable** if $f_X(x) = f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$.

Clearly f is always non-negative for real values of x, but how do we show that $\int_{-\infty}^{\infty} f(x)dx = 1$?

Looks kind of tricky.

Happens to be a nice trick. Write $I = \int_{-\infty}^{\infty} e^{-x^2/2} dx$. Then try to compute I^2 as a two dimensional integral.

That is, write

$$I^2 = \int_{-\infty}^{\infty} e^{-x^2/2} dx \int_{-\infty}^{\infty} e^{-y^2/2} dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2/2} dx e^{-y^2/2} dy.$$

Then switch to polar coordinates.

$$I^2 = \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2/2} r d\theta dr = 2\pi \int_{0}^{\infty} re^{-r^2/2} dr = -2\pi e^{-r^2/2} \bigg|_{0}^{\infty},$$

so $I = \sqrt{2\pi}$.

18.440 Lecture 19
Say X is a (standard) **normal random variable** if
\[f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]
Say X is a (standard) **normal random variable** if
\[f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]

Question: what are mean and variance of X?
Say \(X \) is a (standard) **normal random variable** if \(f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \).

Question: what are mean and variance of \(X \)?

\[
E[X] = \int_{-\infty}^{\infty} xf(x)\,dx. \text{ Can see by symmetry that this zero.}
\]
Say X is a (standard) **normal random variable** if
\[f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]

Question: what are mean and variance of X?

$E[X] = \int_{-\infty}^{\infty} xf(x)dx$. Can see by symmetry that this zero.

Or can compute directly:

\[
E[X] = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} x dx = \frac{1}{\sqrt{2\pi}} \left[e^{-x^2/2} \right]_{-\infty}^{\infty} = 0.
\]
Say \(X \) is a (standard) **normal random variable** if
\[
f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.
\]

Question: what are mean and variance of \(X \)?

\[
E[X] = \int_{-\infty}^{\infty} x f(x) \, dx.
\]
Can see by symmetry that this zero.

Or can compute directly:

\[
E[X] = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} x \, dx = \left. \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \right|_{-\infty}^{\infty} = 0.
\]

How would we compute
\[
\text{Var}[X] = \int f(x) x^2 \, dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} x^2 \, dx?
\]
Say X is a (standard) **normal random variable** if
\[f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]

Question: what are mean and variance of X?

$E[X] = \int_{-\infty}^{\infty} xf(x)dx$. Can see by symmetry that this zero.

Or can compute directly:

\[
E[X] = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} x\,dx = \left. \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \right|_{-\infty}^{\infty} = 0.
\]

How would we compute
\[
\text{Var}[X] = \int f(x)x^2\,dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} x^2\,dx?
\]

Try integration by parts with $u = x$ and $dv = xe^{-x^2/2}\,dx$.

Find that $\text{Var}[X] = \frac{1}{\sqrt{2\pi}} \left(-xe^{-x^2/2} \right|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} e^{-x^2/2}\,dx) = 1.$
Again, X is a (standard) **normal random variable** if
\[
f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.
\]
Again, X is a (standard) **normal random variable** if

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$$

What about $Y = \sigma X + \mu$? Can we “stretch out” and “translate” the normal distribution (as we did last lecture for the uniform distribution)?
Again, X is a (standard) **normal random variable** if
\[f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]

What about $Y = \sigma X + \mu$? Can we “stretch out” and “translate” the normal distribution (as we did last lecture for the uniform distribution)?

Say Y is normal with parameters μ and σ^2 if
\[f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}. \]
General normal random variables

- Again, X is a (standard) **normal random variable** if
 \[f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]
- What about $Y = \sigma X + \mu$? Can we “stretch out” and “translate” the normal distribution (as we did last lecture for the uniform distribution)?
- Say Y is normal with parameters μ and σ^2 if
 \[f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}. \]
- What are the mean and variance of Y?
Again, X is a (standard) **normal random variable** if
\[f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]

What about $Y = \sigma X + \mu$? Can we “stretch out” and “translate” the normal distribution (as we did last lecture for the uniform distribution)?

Say Y is normal with parameters μ and σ^2 if
\[f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}. \]

What are the mean and variance of Y?

$E[Y] = E[X] + \mu = \mu$ and $\text{Var}[Y] = \sigma^2 \text{Var}[X] = \sigma^2$.

General normal random variables

- Again, X is a (standard) **normal random variable** if
 \[f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]
- What about $Y = \sigma X + \mu$? Can we “stretch out” and “translate” the normal distribution (as we did last lecture for the uniform distribution)?
- Say Y is normal with parameters μ and σ^2 if
 \[f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}. \]
- What are the mean and variance of Y?
- $E[Y] = E[X] + \mu = \mu$ and $\text{Var}[Y] = \sigma^2 \text{Var}[X] = \sigma^2$.

18.440 Lecture 19
Again, X is a standard normal random variable if
\[f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]
Again, X is a standard normal random variable if $f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$.

What is the cumulative distribution function?

Values: $\Phi(-3) \approx 0.0013$, $\Phi(-2) \approx 0.023$ and $\Phi(-1) \approx 0.159$.

Rough rule of thumb: "two thirds of time within one SD of mean, 95 percent of time within 2 SDs of mean."
Again, X is a standard normal random variable if
\[f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]

What is the cumulative distribution function?

Write this as
\[F_X(a) = P\{X \leq a\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} \, dx. \]
Again, X is a standard normal random variable if $f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$.

What is the cumulative distribution function?

Write this as $F_X(a) = P\{X \leq a\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} dx$.

How can we compute this integral explicitly?

Values: $\Phi(-3) \approx 0.0013$, $\Phi(-2) \approx 0.023$ and $\Phi(-1) \approx 0.159$.

Rough rule of thumb: “two thirds of time within one SD of mean, 95 percent of time within 2 SDs of mean.”
Again, \(X \) is a standard normal random variable if
\[
f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.
\]

What is the cumulative distribution function?

Write this as
\[
F_X(a) = P\{X \leq a\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} \, dx.
\]

How can we compute this integral explicitly?

Can’t. Let’s just give it a name. Write
\[
\Phi(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} \, dx.
\]
Again, \(X \) is a standard normal random variable if
\[
f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.
\]

What is the cumulative distribution function?

Write this as
\[
F_X(a) = P\{X \leq a\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} \, dx.
\]

How can we compute this integral explicitly?

Can’t. Let’s just give it a name. Write
\[
\Phi(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} \, dx.
\]

Values: \(\Phi(-3) \approx .0013 \), \(\Phi(-2) \approx .023 \) and \(\Phi(-1) \approx .159 \).
Again, \(X \) is a standard normal random variable if
\[
f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.
\]
What is the cumulative distribution function?
Write this as \(F_X(a) = P\{X \leq a\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} dx \).
How can we compute this integral explicitly?
Can’t. Let’s just give it a name. Write
\[
\Phi(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} dx.
\]
Values: \(\Phi(-3) \approx .0013, \Phi(-2) \approx .023 \) and \(\Phi(-1) \approx .159 \).
Rough rule of thumb: “two thirds of time within one SD of mean, 95 percent of time within 2 SDs of mean.”
Outline

Tossing coins

Normal random variables

Special case of central limit theorem
DeMoivre-Laplace Limit Theorem

Let S_n be number of heads in n tosses of a p coin.

What's the standard deviation of S_n?

Answer: \sqrt{npq} (where $q = 1 - p$).

The special quantity $S_n - np\sqrt{npq}$ describes the number of standard deviations that S_n is above or below its mean.

What's the mean and variance of this special quantity? Is it roughly normal?

DeMoivre-Laplace limit theorem (special case of central limit theorem):

$$\lim_{n \to \infty} P\{a \leq S_n - np\sqrt{npq} \leq b\} \to \Phi(b) - \Phi(a).$$

This is $\Phi(b) - \Phi(a) = P\{a \leq X \leq b\}$ when X is a standard normal random variable.
DeMoivre-Laplace Limit Theorem

- Let S_n be number of heads in n tosses of a p coin.
- What's the standard deviation of S_n?
Let S_n be number of heads in n tosses of a p coin.

What’s the standard deviation of S_n?

Answer: \sqrt{npq} (where $q = 1 - p$).
DeMoivre-Laplace Limit Theorem

- Let S_n be number of heads in n tosses of a p coin.
- What’s the standard deviation of S_n?
- Answer: \sqrt{npq} (where $q = 1 - p$).
- The special quantity $\frac{S_n - np}{\sqrt{npq}}$ describes the number of standard deviations that S_n is above or below its mean.
Let S_n be number of heads in n tosses of a p coin.

What’s the standard deviation of S_n?

Answer: \sqrt{npq} (where $q = 1 - p$).

The special quantity $\frac{S_n - np}{\sqrt{npq}}$ describes the number of standard deviations that S_n is above or below its mean.

What’s the mean and variance of this special quantity? Is it roughly normal?
Let S_n be number of heads in n tosses of a p coin.

What’s the standard deviation of S_n?

Answer: \sqrt{npq} (where $q = 1 - p$).

The special quantity $\frac{S_n - np}{\sqrt{npq}}$ describes the number of standard deviations that S_n is above or below its mean.

What’s the mean and variance of this special quantity? Is it roughly normal?

DeMoivre-Laplace limit theorem (special case of central limit theorem):

$$\lim_{n \to \infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$
Let S_n be number of heads in n tosses of a p coin.

What’s the standard deviation of S_n?

Answer: \sqrt{npq} (where $q = 1 - p$).

The special quantity $\frac{S_n - np}{\sqrt{npq}}$ describes the number of standard deviations that S_n is above or below its mean.

What’s the mean and variance of this special quantity? Is it roughly normal?

DeMoivre-Laplace limit theorem (special case of central limit theorem):

$$\lim_{n \to \infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

This is $\Phi(b) - \Phi(a) = P\{a \leq X \leq b\}$ when X is a standard normal random variable.
Problems

▶ Toss a million fair coins. Approximate the probability that I get more than 501,000 heads.
Problems

▶ Toss a million fair coins. Approximate the probability that I get more than 501,000 heads.

▶ Answer: well, \(\sqrt{npq} = \sqrt{10^6 \times .5 \times .5} = 500 \). So we’re asking for probability to be over two SDs above mean. This is approximately \(1 - \Phi(2) = \Phi(-2) \approx .159 \).
Toss a million fair coins. Approximate the probability that I get more than 501,000 heads.

Answer: well, $\sqrt{npq} = \sqrt{10^6 \times .5 \times .5} = 500$. So we’re asking for probability to be over two SDs above mean. This is approximately $1 - \Phi(2) = \Phi(-2) \approx .159$.

Roll 60000 dice. Expect to see 10000 sixes. What’s the probability to see more than 9800?
Problems

- Toss a million fair coins. Approximate the probability that I get more than 501,000 heads.
- Answer: well, $\sqrt{npq} = \sqrt{10^6 \times .5 \times .5} = 500$. So we’re asking for probability to be over two SDs above mean. This is approximately $1 - \Phi(2) = \Phi(-2) \approx .159$.
- Roll 60000 dice. Expect to see 10000 sixes. What’s the probability to see more than 9800?
 - Here $\sqrt{npq} = \sqrt{60000 \times \frac{1}{6} \times \frac{5}{6}} \approx 91.28$.
Problems

▶ Toss a million fair coins. Approximate the probability that I get more than 501,000 heads.

▶ Answer: well, $\sqrt{npq} = \sqrt{10^6 \times .5 \times .5} = 500$. So we’re asking for probability to be over two SDs above mean. This is approximately $1 - \Phi(2) = \Phi(-2) \approx .159$.

▶ Roll 60000 dice. Expect to see 10000 sixes. What’s the probability to see more than 9800?

▶ Here $\sqrt{npq} = \sqrt{60000 \times \frac{1}{6} \times \frac{5}{6}} \approx 91.28$.

▶ And $200/91.28 \approx 2.19$. Answer is about $1 - \Phi(-2.19)$.

18.440 Lecture 19