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Continuous random variables

I Say X is a continuous random variable if there exists a
probability density function f = fX on R such that
P{X ∈ B} =

∫
B f (x)dx :=

∫
1B(x)f (x)dx .

I We may assume
∫
R f (x)dx =

∫∞
−∞ f (x)dx = 1 and f is

non-negative.

I Probability of interval [a, b] is given by
∫ b
a f (x)dx , the area

under f between a and b.

I Probability of any single point is zero.

I Define cumulative distribution function
F (a) = FX (a) := P{X < a} = P{X ≤ a} =

∫ a
−∞ f (x)dx .

18.440 Lecture 17



Continuous random variables

I Say X is a continuous random variable if there exists a
probability density function f = fX on R such that
P{X ∈ B} =

∫
B f (x)dx :=

∫
1B(x)f (x)dx .

I We may assume
∫
R f (x)dx =

∫∞
−∞ f (x)dx = 1 and f is

non-negative.

I Probability of interval [a, b] is given by
∫ b
a f (x)dx , the area

under f between a and b.

I Probability of any single point is zero.

I Define cumulative distribution function
F (a) = FX (a) := P{X < a} = P{X ≤ a} =

∫ a
−∞ f (x)dx .

18.440 Lecture 17



Continuous random variables

I Say X is a continuous random variable if there exists a
probability density function f = fX on R such that
P{X ∈ B} =

∫
B f (x)dx :=

∫
1B(x)f (x)dx .

I We may assume
∫
R f (x)dx =

∫∞
−∞ f (x)dx = 1 and f is

non-negative.

I Probability of interval [a, b] is given by
∫ b
a f (x)dx , the area

under f between a and b.

I Probability of any single point is zero.

I Define cumulative distribution function
F (a) = FX (a) := P{X < a} = P{X ≤ a} =

∫ a
−∞ f (x)dx .

18.440 Lecture 17



Continuous random variables

I Say X is a continuous random variable if there exists a
probability density function f = fX on R such that
P{X ∈ B} =

∫
B f (x)dx :=

∫
1B(x)f (x)dx .

I We may assume
∫
R f (x)dx =

∫∞
−∞ f (x)dx = 1 and f is

non-negative.

I Probability of interval [a, b] is given by
∫ b
a f (x)dx , the area

under f between a and b.

I Probability of any single point is zero.

I Define cumulative distribution function
F (a) = FX (a) := P{X < a} = P{X ≤ a} =

∫ a
−∞ f (x)dx .

18.440 Lecture 17



Continuous random variables

I Say X is a continuous random variable if there exists a
probability density function f = fX on R such that
P{X ∈ B} =

∫
B f (x)dx :=

∫
1B(x)f (x)dx .

I We may assume
∫
R f (x)dx =

∫∞
−∞ f (x)dx = 1 and f is

non-negative.

I Probability of interval [a, b] is given by
∫ b
a f (x)dx , the area

under f between a and b.

I Probability of any single point is zero.

I Define cumulative distribution function
F (a) = FX (a) := P{X < a} = P{X ≤ a} =

∫ a
−∞ f (x)dx .

18.440 Lecture 17



Simple example

I Suppose f (x) =

{
1/2 x ∈ [0, 2]

0 x 6∈ [0, 2].

I What is P{X < 3/2}?
I What is P{X = 3/2}?
I What is P{1/2 < X < 3/2}?
I What is P{X ∈ (0, 1) ∪ (3/2, 5)}?
I What is F ?

I We say that X is uniformly distributed on the interval
[0, 2].
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Another example

I Suppose f (x) =

{
x/2 x ∈ [0, 2]

0 0 6∈ [0, 2].

I What is P{X < 3/2}?
I What is P{X = 3/2}?
I What is P{1/2 < X < 3/2}?
I What is F ?
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Expectations of continuous random variables

I Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

E [X ] =
∑

x :p(x)>0

p(x)x .

I How should we define E [X ] when X is a continuous random
variable?

I Answer: E [X ] =
∫∞
−∞ f (x)xdx .

I Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

E [g(X )] =
∑

x :p(x)>0

p(x)g(x).

I What is the analog when X is a continuous random variable?

I Answer: we will write E [g(X )] =
∫∞
−∞ f (x)g(x)dx .
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Variance of continuous random variables

I Suppose X is a continuous random variable with mean µ.

I We can write Var[X ] = E [(X − µ)2], same as in the discrete
case.

I Next, if g = g1 + g2 then
E [g(X )] =

∫
g1(x)f (x)dx +

∫
g2(x)f (x)dx =∫ (

g1(x) + g2(x)
)
f (x)dx = E [g1(X )] + E [g2(X )].

I Furthermore, E [ag(X )] = aE [g(X )] when a is a constant.

I Just as in the discrete case, we can expand the variance
expression as Var[X ] = E [X 2 − 2µX + µ2] and use additivity
of expectation to say that
Var[X ] = E [X 2]− 2µE [X ] + E [µ2] = E [X 2]− 2µ2 + µ2 =
E [X 2]− E [X ]2.

I This formula is often useful for calculations.
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Examples

I Suppose that fX (x) =

{
1/2 x ∈ [0, 2]

0 x 6∈ [0, 2].
.

I What is Var[X ]?

I Suppose instead that fX (x) =

{
x/2 x ∈ [0, 2]

0 0 6∈ [0, 2].

I What is Var[X ]?
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Uniform measure on [0, 1]

I One of the very simplest probability density functions is

f (x) =

{
1 x ∈ [0, 1]

0 0 6∈ [0, 1].
.

I If B ⊂ [0, 1] is an interval, then P{X ∈ B} is the length of
that interval.

I Generally, if B ⊂ [0, 1] then P{X ∈ B} =
∫
B 1dx =

∫
1B(x)dx

is the “total volume” or “total length” of the set B.

I What if B is the set of all rational numbers?

I How do we mathematically define the volume of an arbitrary
set B?
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Do all sets have probabilities? A famous paradox:

I Uniform probability measure on [0, 1) should satisfy
translation invariance: If B and a horizontal translation of B
are both subsets [0, 1), their probabilities should be equal.

I Consider wrap-around translations τr (x) = (x + r) mod 1.

I By translation invariance, τr (B) has same probability as B.

I Call x , y “equivalent modulo rationals” if x − y is rational
(e.g., x = π − 3 and y = π − 9/4). An equivalence class is
the set of points in [0, 1) equivalent to some given point.

I There are uncountably many of these classes.

I Let A ⊂ [0, 1) contain one point from each class. For each
x ∈ [0, 1), there is one a ∈ A such that r = x − a is rational.

I Then each x in [0, 1) lies in τr (A) for one rational r ∈ [0, 1).

I Thus [0, 1) = ∪τr (A) as r ranges over rationals in [0, 1).

I If P(A) = 0, then P(S) =
∑

r P(τr (A)) = 0. If P(A) > 0 then
P(S) =

∑
r P(τr (A)) =∞. Contradicts P(S) = 1 axiom.
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Three ways to get around this

I 1. Re-examine axioms of mathematics: the very existence
of a set A with one element from each equivalence class is
consequence of so-called axiom of choice. Removing that
axiom makes paradox goes away, since one can just suppose
(pretend?) these kinds of sets don’t exist.

I 2. Re-examine axioms of probability: Replace countable
additivity with finite additivity? (Look up Banach-Tarski.)

I 3. Keep the axiom of choice and countable additivity but
don’t define probabilities of all sets: Instead of defining
P(B) for every subset B of sample space, restrict attention to
a family of so-called “measurable” sets.

I Most mainstream probability and analysis takes the third
approach.

I In practice, sets we care about (e.g., countable unions of
points and intervals) tend to be measurable.
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Perspective

I More advanced courses in probability and analysis (such as
18.125 and 18.175) spend a significant amount of time
rigorously constructing a class of so-called measurable sets
and the so-called Lebesgue measure, which assigns a real
number (a measure) to each of these sets.

I These courses also replace the Riemann integral with the
so-called Lebesgue integral.

I We will not treat these topics any further in this course.

I We usually limit our attention to probability density functions
f and sets B for which the ordinary Riemann integral∫

1B(x)f (x)dx is well defined.

I Riemann integration is a mathematically rigorous theory. It’s
just not as robust as Lebesgue integration.

18.440 Lecture 17



Perspective

I More advanced courses in probability and analysis (such as
18.125 and 18.175) spend a significant amount of time
rigorously constructing a class of so-called measurable sets
and the so-called Lebesgue measure, which assigns a real
number (a measure) to each of these sets.

I These courses also replace the Riemann integral with the
so-called Lebesgue integral.

I We will not treat these topics any further in this course.

I We usually limit our attention to probability density functions
f and sets B for which the ordinary Riemann integral∫

1B(x)f (x)dx is well defined.

I Riemann integration is a mathematically rigorous theory. It’s
just not as robust as Lebesgue integration.

18.440 Lecture 17



Perspective

I More advanced courses in probability and analysis (such as
18.125 and 18.175) spend a significant amount of time
rigorously constructing a class of so-called measurable sets
and the so-called Lebesgue measure, which assigns a real
number (a measure) to each of these sets.

I These courses also replace the Riemann integral with the
so-called Lebesgue integral.

I We will not treat these topics any further in this course.

I We usually limit our attention to probability density functions
f and sets B for which the ordinary Riemann integral∫

1B(x)f (x)dx is well defined.

I Riemann integration is a mathematically rigorous theory. It’s
just not as robust as Lebesgue integration.

18.440 Lecture 17



Perspective

I More advanced courses in probability and analysis (such as
18.125 and 18.175) spend a significant amount of time
rigorously constructing a class of so-called measurable sets
and the so-called Lebesgue measure, which assigns a real
number (a measure) to each of these sets.

I These courses also replace the Riemann integral with the
so-called Lebesgue integral.

I We will not treat these topics any further in this course.

I We usually limit our attention to probability density functions
f and sets B for which the ordinary Riemann integral∫

1B(x)f (x)dx is well defined.

I Riemann integration is a mathematically rigorous theory. It’s
just not as robust as Lebesgue integration.

18.440 Lecture 17



Perspective

I More advanced courses in probability and analysis (such as
18.125 and 18.175) spend a significant amount of time
rigorously constructing a class of so-called measurable sets
and the so-called Lebesgue measure, which assigns a real
number (a measure) to each of these sets.

I These courses also replace the Riemann integral with the
so-called Lebesgue integral.

I We will not treat these topics any further in this course.

I We usually limit our attention to probability density functions
f and sets B for which the ordinary Riemann integral∫

1B(x)f (x)dx is well defined.

I Riemann integration is a mathematically rigorous theory. It’s
just not as robust as Lebesgue integration.

18.440 Lecture 17


	Continuous random variables
	Expectation and variance of continuous random variables
	Measurable sets and a famous paradox

