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Bernoulli random variables

I Toss fair coin n times. (Tosses are independent.) What is the
probability of k heads?

I Answer:
(n
k

)
/2n.

I What if coin has p probability to be heads?

I Answer:
(n
k

)
pk(1− p)n−k .

I Writing q = 1− p, we can write this as
(n
k

)
pkqn−k

I Can use binomial theorem to show probabilities sum to one:

I 1 = 1n = (p + q)n =
∑n

k=0

(n
k

)
pkqn−k .

I Number of heads is binomial random variable with
parameters (n, p).
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Examples

I Toss 6 fair coins. Let X be number of heads you see. Then X
is binomial with parameters (n, p) given by (6, 1/2).

I Probability mass function for X can be computed using the
6th row of Pascal’s triangle.

I If coin is biased (comes up heads with probability p 6= 1/2),
we can still use the 6th row of Pascal’s triangle, but the
probability that X = i gets multiplied by pi (1− p)n−i .
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Other examples

I Room contains n people. What is the probability that exactly
i of them were born on a Tuesday?

I Answer: use binomial formula
(n
i

)
piqn−i with p = 1/7 and

q = 1− p = 6/7.

I Let n = 100. Compute the probability that nobody was born
on a Tuesday.

I What is the probability that exactly 15 people were born on a
Tuesday?
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Expectation

I Let X be a binomial random variable with parameters (n, p).

I What is E [X ]?

I Direct approach: by definition of expectation,
E [X ] =

∑n
i=0 P{X = i}i .

I What happens if we modify the nth row of Pascal’s triangle by
multiplying the i term by i?

I For example, replace the 5th row (1, 5, 10, 10, 5, 1) by
(0, 5, 20, 30, 20, 5). Does this remind us of an earlier row in
the triangle?

I Perhaps the prior row (1, 4, 6, 4, 1)?
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Useful Pascal’s triangle identity

I Recall that
(n
i

)
= n×(n−1)×...×(n−i+1)

i×(i−1)×...×(1) . This implies a simple

but important identity: i
(n
i

)
= n

(n−1
i−1

)
.

I Using this identity (and q = 1− p), we can write

E [X ] =
n∑

i=0

i

(
n

i

)
piqn−i =

n∑
i=1

n

(
n − 1

i − 1

)
piqn−i .

I Rewrite this as E [X ] = np
∑n

i=1

(n−1
i−1

)
p(i−1)q(n−1)−(i−1).

I Substitute j = i − 1 to get

E [X ] = np
n−1∑
j=0

(
n − 1

j

)
pjq(n−1)−j = np(p + q)n−1 = np.
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Decomposition approach to computing expectation

I Let X be a binomial random variable with parameters (n, p).
Here is another way to compute E [X ].

I Think of X as representing number of heads in n tosses of
coin that is heads with probability p.

I Write X =
∑n

j=1 Xj , where Xj is 1 if the jth coin is heads, 0
otherwise.

I In other words, Xj is the number of heads (zero or one) on the
jth toss.

I Note that E [Xj ] = p · 1 + (1− p) · 0 = p for each j .

I Conclude by additivity of expectation that

E [X ] =
n∑

j=1

E [Xj ] =
n∑

j=1

p = np.
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Interesting moment computation

I Let X be binomial (n, p) and fix k ≥ 1. What is E [X k ]?

I Recall identity: i
(n
i

)
= n

(n−1
i−1

)
.

I Generally, E [X k ] can be written as

n∑
i=0

i

(
n

i

)
pi (1− p)n−i ik−1.

I Identity gives

E [X k ] = np
n∑

i=1

(
n − 1

i − 1

)
pi−1(1− p)n−i ik−1 =

np
n−1∑
j=0

(
n − 1

j

)
pj(1− p)n−1−j(j + 1)k−1.

I Thus E [X k ] = npE [(Y + 1)k−1] where Y is binomial with
parameters (n − 1, p).
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Computing the variance

I Let X be binomial (n, p). What is E [X ]?

I We know E [X ] = np.

I We computed identity E [X k ] = npE [(Y + 1)k−1] where Y is
binomial with parameters (n − 1, p).

I In particular E [X 2] = npE [Y + 1] = np[(n − 1)p + 1].

I So Var[X ] = E [X 2]− E [X ]2 = np(n − 1)p + np − (np)2 =
np(1− p) = npq, where q = 1− p.

I Commit to memory: variance of binomial (n, p) random
variable is npq.

I This is n times the variance you’d get with a single coin.
Coincidence?
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Compute variance with decomposition trick

I X =
∑n

j=1 Xj , so

E [X 2] = E [
∑n

i=1 Xi
∑n

j=1 Xj ] =
∑n

i=1

∑n
j=1 E [XiXj ]

I E [XiXj ] is p if i = j , p2 otherwise.

I
∑n

i=1

∑n
j=1 E [XiXj ] has n terms equal to p and (n − 1)n

terms equal to p2.

I So E [X 2] = np + (n − 1)np2 = np + (np)2 − np2.

I Thus
Var[X ] = E [X 2]− E [X ]2 = np − np2 = np(1− p) = npq.
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More examples

I An airplane seats 200, but the airline has sold 205 tickets.
Each person, independently, has a .05 chance of not showing
up for the flight. What is the probability that more than 200
people will show up for the flight?

I In a 100 person senate, forty people always vote for the
Republicans’ position, forty people always for the Democrats’
position and 20 people just toss a coin to decide which way to
vote. What is the probability that a given vote is tied?

I You invite 50 friends to a party. Each one, independently, has
a 1/3 chance of showing up. That is the probability that more
than 25 people will show up?
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