18.440 Practice Midterm 2 Partial Solutions

- 1. (20 points) Let X and Y be independent Poisson random variables with parameter 1. Compute the following. (Give a correct formula involving sums does not need to be in closed form.)
 - (a) The probability mass function for X given that X + Y = 5. ANSWER: Write $p(k) = P\{X = k\} = e^{-1}/k!$. Then suppose $x \in \{0, 1, 2, 3, 4, 5\}$. (Mass function is zero at other values.) $P\{X = x | X + Y = 5\} = \frac{P\{X = x, X + Y = 5\}}{P\{X + Y = 5\}} = \frac{P\{X = x\}P\{Y = 5 x\}}{P\{X + Y = 5\}}$. This is equal to $\frac{p(x)p(5-x)}{\sum_{j=0}^{5} p(x)p(5-x)}$.
 - (b) The conditional expectation of Y^2 given that X = 2Y.

ANSWER: Let $y\geq 0$ be an integer. First we compute $P\{Y=y|X=2Y\}=\frac{P\{Y=y,X=2y\}}{P\{X=2Y\}}=\frac{p(2y)p(y)}{\sum_{k=0}^{\infty}p(2k)p(k)}.$ Then we note that the $E[Y^2|X=2Y]=\sum_{y=0}^{\infty}P\{Y=y|X=2Y\}y^2.$

(c) The probability mass function for X-2Y given that X>2Y.

ANSWER: Write Z = X - 2Y. Then

$$p_Z(z) = P\{Z = z\} = \sum_{y = -\infty}^{\infty} P\{Y = y\}P\{X = z + 2y\} = \sum_{y = 0}^{\infty} p(y)p(z + 2y).$$

Now for z > 0 we have $P\{Z = z | Z > 0\} = \frac{p_Z(z)}{P\{Z > 0\}} = \frac{p_Z(z)}{\sum_{j=1}^{\infty} p_Z(j)}$.

(d) The probability that X = Y.

ANSWER: $\sum_{k=0}^{\infty} p(k)^2$.

- 2. (15 points) Solve the following:
 - (a) Let X be a normal random variable with parameters (μ, σ^2) and Y an exponential random variable with parameter λ . Write down the probability density function for X + Y.

ANSWER

$$f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-((a-y)-\mu)^2/2\sigma^2} \lambda e^{-\lambda y} dy$$

(b) Compute the moment generating function and characteristic function for the uniform random variable on [0, 5].

ANSWER: Generally when X is uniform on (a,b) we have $M_X(t) = \frac{e^{tb} - e^{ta}}{t(b-a)}$ and $\phi_X(t) = \frac{e^{itb} - e^{ita}}{it(b-a)}$.

(c) Let X_1, \ldots, X_n be independent exponential random variables of parameter λ . Let Y be the second largest of the X_i . Compute the mean and variance of Y.

ANSWER: This is essentially the radioactive decay problem: how long until n-1 of the n particles have decayed. Let T_k be time from when (k-1)th particle decays until kth particle decays. Each T_k is exponential with parameter $(n+1-k)\lambda$. It has expectation $\frac{1}{(n+1-k)\lambda}$ and variance $\frac{1}{(n+1-k)^2\lambda^2}$. By additivity of expectation $E[\sum_{k=1}^{n-1} T_k] = \sum_{k=1}^{n-1} E[T_k]$. By independence of the T_k we also have $Var[\sum_{k=1}^{n-1} T_k] = \sum_{k=1}^{n-1} Var[T_k]$.

- 3. (10 points)
 - (a) Suppose that the pair (X, Y) is uniformly distributed on the disc $x^2 + y^2 \le 1$. Find f_X , f_Y .

ANSWER: $f(x,y) = \frac{1}{\pi}$ on the disc, zero elsewhere. Then for $x \in (-1,1)$ we have $f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy = \frac{1}{\pi} 2\sqrt{1-x^2}$. Symmetric argument gives $f_Y(y) = \frac{1}{\pi} 2\sqrt{1-y^2}$ for $y \in (-1,1)$.

(b) Find also $f_{X^2+Y^2}$ and $f_{\max(x,y)}$.

ANSWER: Easiest to first calculate $F_{X^2+Y^2}(a)$ for $a \in [0,1]$. This is $\frac{1}{\pi}$ times the area of the disc of radius r with $r^2=a$. Thus $F_{X^2+Y^2}(a)=\frac{1}{\pi}\pi r^2=r^2=a$. Conclude that X^2+Y^2 is uniform on [0,1] and $f_{X^2+Y^2}=1$ on [0,1]. I'll skip the $f_{\max(x,y)}$ part since it's a bit messy but you could at least in principle compute $F_{\max(x,y)}(a)=P\{\max(x,y)\leq a\}$ using some trigonometry (computing area of intersection of a quadrant with a circle) and then differentiate to get the density function.

(c) Find the conditional probability density for X given Y=y for $y\in [-1,1].$

ANSWER: Uniform on $(-\sqrt{1-y^2}, -\sqrt{1-y^2})$.

(d) Compute $\mathbb{E}[X^2 + Y^2]$.

ANSWER: $\frac{1}{2}$, by part (b)

- 4. (10 points) Suppose that X_i are independent random variables which take the values 2 and .5 each with probability 1/2. Let $X = \prod_{i=1}^{n} X_i$.
 - (a) Compute $\mathbb{E}X$.

ANSWER: By independence $E[X] = \prod_{i=1}^{n} E[X_i] = 1.25^n$.

(b) Estimate the $P\{X > 1000\}$ if n = 100.

ANSWER: Let K be number of times X_i is 2, so that 100 - K is number of times it is .5. Then $X = 2^K.5^{100-K} = 2^K/2^{100-K} = 2^{2K-100}$. Note that X > 1000 if and only if $2K - 100 \ge 10$, i.e., $K \ge 55$. Now we have a standard binomial problem. What's probability to have at least 55 heads when we toss 100 coins. Standard deviation is $\sqrt{npq} = 5$. So should be roughly $1 - \Phi(1)$.

- 5. (20 points) Suppose X is an exponential random variable with parameter $\lambda_1 = 1$, Y is an exponential random variable with $\lambda_2 = 2$, and Z is an exponential random variable with parameter $\lambda_3 = 3$. Assume X and Y and Z are independent and compute the following:
 - (a) The probability density function f_{X+Y}

ANSWER:

$$f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy = \int_{0}^{\infty} \lambda_1 e^{-\lambda_1 (a-y)} \lambda_2 e^{-\lambda_2 y} dy.$$

(b) Cov(XY, X + Y)

ANSWER: $E[XY(X+Y)] - E[XY]E[X+Y] = E[X^2Y] + E[XY^2] - E[XY](E[X] + E[Y]) = E[X^2]E[Y] + E[X]E[Y^2] - E[X]E[Y]E[X] - E[X]E[Y]E[Y].$ Recall that $E[X] = 1/\lambda_1$ and $E[X^2] = 2/\lambda_2^2$ and $E[Y] = 1/\lambda_2$ and $E[Y^2] = 2/\lambda_2^2$.

(c) $\mathbb{E}[\max\{X, Y, Z\}]$

ANSWER: Perhaps the easiest thing is to first compute

$$F_{\max\{X,Y,Z\}}(a) = P\{\max\{X,Y,Z\} \le a\} = F_X(a)F_Y(z)F_Z(a) = (1 - e^{\lambda_1 a})(1 - e^{\lambda_2 a})(1 - e^{\lambda_3 a}).$$

Then recall the formula $E[F_{\max\{X,Y,Z\}}] = \int_0^\infty 1 - F_{\max\{X,Y,Z\}}(a) da$.

(d) $Var[min\{X, Y, Z\}]$

ANSWER: Minimum is exponential with parameter $\lambda_1 + \lambda_2 + \lambda_3 = 6$. So variance is $1/6^2 = 1/36$.

- (e) The correlation coefficient $\rho(\min\{X,Y,Z\},\max\{X,Y,Z\})$. ANSWER: This one is a bit tricky. Idea is to argue first that $\min\{X,Y,Z\}$ and $\max\{X,Y,Z\}-\min\{X,Y,Z\}$ are independent. Thus by bilinearity of covariance, we have $\operatorname{Cov}(\min\{X,Y,Z\},\max\{X,Y,Z\}) = \operatorname{Varmin}\{X,Y,Z\} = 1/36$, using the result of (d). From here we use the formula for ρ (though it requires input from (c), which we skipped).
- 6. (10 points) Suppose X_1, \ldots, X_{10} be independent standard normal random variables. For each $i \in \{2, 3, \ldots, 9\}$ we say that i is a local maximum if $X_i > X_{i+1}$ and $X_i > X_{i-1}$. Let N be the number of local maxima. Compute
 - (a) The expectation of N.

ANSWER: Each $i \in \{2, 3, ..., 9\}$ has a 1/3 change to be a local maximum. (Basically, X_i has to be the largest among itself and two neighbors.) So E[N] = 8/3.

(b) The variance of N.

ANSWER: We need to compute $E[N^2]$. Letting N_i be 1 if i is a local maximum, zero otherwise, we have $E[N^2] = \sum_{i=2}^{9} \sum_{j=2}^{9} E[N_i N_j]$. This sum includes

- (a) 8 terms of form $E[N_iN_i]$, which are each equal to 1/3.
- (b) 14 terms of form $E[N_iN_{i+1}]$ or $E[N_iN_{i-1}]$ which are each equal to zero (to neighbors can't both be local maxima).
- (c) 12 terms of form $E[N_iN_{i+2}]$ or $E[N_iN_{i-2}]$. Consider: five guys in a row, we need the probability that the second and fourth are both local maxima. Have 1/5 chance that second is largest among these five, and given that, have 1/3 chance that fourth is local maximum. So 1/15 chance in case second is largest, similarly 1/15 in case fourth is largest, so $E[N_iN_{i+2}] = 2/15$ over all.
- (d) 64 8 14 12 = 30 remaining terms.

Sum all these up to get $E[N^2]$. Then $Var[N^2] = E[N^2] - E[N]^2$.

- (c) The correlation coefficient $\rho(N, X_1)$. ANSWER: Here $\rho(N, X_1) = \operatorname{Cov}(N, X_1) / \sqrt{\operatorname{Var}(N)\operatorname{Var}(X_1)}$. Hard part remaining is to compute $\operatorname{Cov}(N, X_1)$. By bilinearity of expectation, this is $\sum_{j=2}^{9} \operatorname{Cov}(N_j, X_1)$. These terms are all zero except when j=2. So we just need to find $\operatorname{Cov}(N_2, X_1)$. Key step to compute $E[N_2X_1]$. If f is standard normal density, this can be written as $\int \int \int f(x)f(y)f(z)x$ where the integral is taken over the portion of R^2 for which y>x and y>z. I think I'll skip the part where we actually compute the integral.
- 7. (15 points) Give the name and an explicit formula for the density or mass function of $\sum_{i=1}^{n} X_i$ when the X_i are
 - (a) Independent normal with parameter μ, σ^2 . ANSWER: normal with parameters $(n\mu, n\sigma^2)$
 - (b) Independent exponential with parameter λ . ANSWER: gamma with parameters n and λ
 - (c) Independent geometric with parameter p. ANSWER: negative binomial with parameter p.
 - (d) Independent Poisson with parameter λ ANSWER: Poisson with parameter $n\lambda$.
 - (e) Independent Bernoulli with parameter p. ANSWER: binomial with parameters (n, p).