
Central limit theorem and strong law of large numbers

18.600 Problem Set 9, due December 1

Welcome to your ninth 18.600 problem set! We will explore the central limit theorem and a related
statistics problem where one has N i.i.d. samples, one (roughly) knows their standard deviation σ, and
one wonders how close the observed average is to the true mean.

The last problem set discussed correlations, including the sort of empirical correlations one observes
in real world data. We noted that correlations do not always have clear or simple explanations (like
“A causes B” or “B causes A” or “C causes both A and B”). This problem set will explore efforts
to understand causation using controlled experiments. According to https://clinicaltrials.gov/

there are tens of thousands of clinical trials performed every year worldwide. Many have a very simple
form: a test group and a control group, and a common variable measured for both groups. Much of
what we know about medicine and other areas of science comes from experiments like these.

The idea is that if a variable measured in an experiment has expectation µ and standard deviation σ,
then the average A of N independent instances of the variable has expectation µ and standard deviation
σ = σ/

√
N . If N is large then σ is small, and A is (by the central limit theorem) approximately

normal with mean µ and standard deviation σ. This implies P (|A − µ| ≤ 2σ) ≈ .95. Since A is close
to µ with high probability, it can be seen as an estimate for µ. If we can estimate µ accurately, we
can detect whether µ changes when we modify the experiment. Sampling N independent instances of
a random variable (instead of a single instance) is like looking under a

√
N -magnifying microscope. It

lets us detect effects that are smaller (by a
√
N factor) than we could otherwise see.

For example, suppose the amount someone’s blood pressure changes from one measurement to
another measurement three months later is a random variable X with expectation µ and standard
deviation σ. Suppose that if a person is given a blood pressure drug, the change is a random variable
X̃ with standard deviation σ and expectation µ− σ.

If you try the drug on one person and blood pressure decreases, you can’t tell if this is due to the
drug or chance. But consider A = 1

N

∑N
i=1Xi and Ã = 1

N

∑N
i=1 X̃i where Xi are independent instances

of X and X̃i are independent instances of X̃. Now A and Ã are roughly normal with standard deviation
σ/

√
N and means µ and µ − σ. If N = 100, then E([Ã − A)] = −10σ, which is (in magnitude) ten

times the standard deviation of A and thus 10/
√
2 ≈ 7 times the standard deviation of (Ã− A). This

is now a “visible” difference.
In statistics, one defines a p-value to be the probabilty that an effect as large as the one observed

would be obtained under a “null hypothesis.” In the trial described above, the null hypothesis might
be that A and Ã are identically distributed (and roughly normal) with standard deviation σ. Then
experimentally observe x = (Ã−A). The p-value is Φ

(
x/(σ

√
2)
)
, which is the probability that (Ã−A) ≤

x under the null hypothesis. One (arguably unfortunate) convention is to say x is statistically significant
if p ≤ .05 (or p ≤ .025 ≈ Φ(−2), which roughly means that either x ≤ −2SD(A−Ã) or x ≥ 2SD(A−Ã)).
The problem with the convention is that given many trials, each measuring many things, one sees
many “significant” results due to chance. It can be hard to explain to a layperson that “statistically
significant” is not synonymous with “meaningful.” In some settings, one expects most statistically
significant results to be due to chance, not an underlying effect.1

If you google Bohannon chocolate you can read an entertaining exposé of the willingness of some
journals to publish (and news organizations to publicize) dubious statistically significant results. Bo-
hannon conducted a tiny (N = 15) trial, tested many parameters, and happened to find p < .05 for

1In the discussion above, we assume that the standard deviations of X and X̃ are both roughly equal to a known value
σ. If σ is not known, we can replace it with an approximation s (called a sample standard deviation) computed from the
data itself. When A is a sample mean, the number of standard deviations (of A) by which it exceeds its null hypothesis
value is sometimes called a z-score. A t-score is the same except that the standard deviation of A is estimated using s in
place of σ. If you want to know the probability that a t-score is large, you have to consider that one way for it to be large
is if the z-score is large, but another is if s happens by chance to be much less than σ. Google Student’s t-test orWelch’s
t-test or two-sample t-test to find out how to compute p-values that take both of these things into account. These tests
are based on the assumption that either X and X̃ are normal or the sample size is large enough so that the sample means
are roughly normal (and the sample standard deviation is not too likely to be unusually small). We won’t say any more
about t-tests in the course, but you’ll see them a lot if you read academic papers, and it’s good to know what they’re
talking about. (The chocolate study mentioned above uses a t-test.)
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one of them. The trial was real, but anyone familiar with basic statistics who read the paper would
be almost certain that the finding (“dark chocolate causes weight loss”) was due to chance. (Also too
good to be true.) It was widely reported anyway.

A stricter “5 sigma standard,” common in physics, requires |x| ≥ 5SD(Ã − A), or p ≤ Φ(−5) ≈
.0000003. The recent Higgs boson discovery used that standard. Very roughly speaking, you smash tiny
things together lots of times and measure the released energy; if you get more measurements in the
Higgs boson range than chance predicts (significant at the 5 sigma level) you have observed the particle.

Before launching an experiment, you should have a common sense idea of what the magnitude of the
effect might be, and make sure that N is large enough for the effect to be visible. For example, suppose
you think babies who watch your educational baby videos weekly will grow up to have SAT scores a
10th of a standard deviation higher than babies who don’t. First, recognize that this would be a large
effect. (If 12 years of expensive private schooling/tutoring raise SAT score one standard deviation—
perhaps a high estimate—your videos would have to do more than an average year of expensive private
schooling/tutoring.) And second, recognize that even if the effect is this large, you can’t reliably detect
it with a trial involving 100 babies. With 10,000 babies in a test group and 10,000 in a control group,
the effect would be clear. But can you actually conduct a study this large?

A. ANOTHER STRATEGY FOR PEDRO: To prepare for the next problem, suppose that you
discover a market inefficiency in the form of a mispriced asset. Precisely, you discover an asset priced
at $10 that has a p > 1/2 chance to go up to $11 over the next day or so (before reaching $9) and a
(1− p) < 1/2 chance to go down to $9 (before reaching $11). By buying r shares at $10 and them
selling when the price reaches $9 or $11, you have an opportunity to make a bet that will win r
dollars with probability p > 1/2 and lose r dollars with probability (1− p). Let’s ignore transaction
costs and bid-ask spread. (And assume that, unlike all those people who merely think they can
recognize market inefficiencies, you actually can. Assume also that your wisdom was obtained legally
— so no risk of an insider trading conviction!) So now you effectively have an opportunity to bet r
dollars on a p coin with p > 1/2. The question is this: how much should you bet? In expectation you
will make pr + (1− p)(−r) = (2p− 1)r dollars off this bet, so to maximize your expected payoff, you
should bet as much as you possibly can. But is that really wise? If you repeatedly bet all our money
on p-coins, it might not be long before you lose everything. The Kelly strategy states that instead of
betting everything, you should bet a 2p− 1 fraction of your current fortune. The next problem is a
simple question about this strategy. (Pedro from lecture had an asset that went up 15 percent with
probability .53, down .15 otherwise. Kelly advises him to invest 40 percent his wealth in this asset
each month, since this amounts to wagering a .4 · .15 = .06 = 2 · .53− 1 fraction of his wealth.)

1. Problem 67 (textbook): Consider a gambler who, at each gamble, either wins or loses her bet
with respective probabilities p and 1− p. A popular gambling system known as the Kelly
strategy is to always bet the fraction 2p− 1 of your current fortune when p > 1/2.

(a) Compute the expected fortune after n gambles of a gambler who starts with x units and
employs the Kelly strategy.

(b) Show that the Kelly strategy is the strategy that maximizes the expected log of the
gambler’s total wealth after n bets.

B. CONFIDENCE INTERVALS IN YOUR HEAD: If is N is (approximately) a normal
random variable with mean µ and variance σ2, then this problem will refer to the interval
[µ− 2σ, µ+ 2σ] as the 95-percent interval for N . The random variable N lies within this interval
about a Φ(2)−Φ(−2) ≈ .95 fraction of the time. We’d be surprised if N were far outside this interval.
On the other hand, one can show that 1.5σ ≤ |N − µ| ≤ 2.5σ about 12 percent of the time: hence,
outcomes near the edge of this interval are not surprising at all. Give the 95-percent interval (whose
endpoints are mean plus or minus two standard deviations) for each of the quantities below. Try to
solve these problems quickly and in your head if you can (okay to write interval without showing
work). The better you get at this, the more you’ll apply it in daily life. (Simple rule: when you sum
N i.i.d. copies of something, SD is multipled by

√
N . When you average N i.i.d. copies, SD is divided

by
√
N . Remember that SD is

√
npq for binomial and

√
λ for Poisson.)
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1. Alice takes a course with 2 midterms (each 25% of grade) and one final (50% percent of grade).
Partial credit rules vary, but roughly speaking each midterm has 25 key ideas (and the final 50
key ideas) that one either gets or doesn’t. Alice gets each of these (independently) with
probability .8. Compute the 95-percent interval for her overall percentage.

2. Bob’s favorite basketball team scores X1 + 2X2 + 3X3 points in a game, where Xi are
independent Poisson with λ1 = 15, λ2 = 30, λ3 = 10. Give a 95-percent interval for the score.

3. Carol’s fund makes 25 risky (independent) investments per year. Each earns a return with
expectation 5 percent and SD 20 percent. Give the 95-percent interval for the average return.

4. A restaurant will be assigned 49 Yelp reviews; each is an independent random variable with
expectation 4 and standard deviation 1.4. Give the 95-percent interval for the average score.

5. A university admits 600 students and expects 60 percent to accept their offers. Give the
95-percent interval for the university’s yield rate.

6. 100 people are infected with a certain flu virus. The expected duration of symptoms is 10 days,
with standard deviation 5 days. Give the 95-percent interval for average duration.

7. There is a group of 100 college students at an elite university. After ten years, the income of
each student will be an independent random variable with mean $180,000 and standard
deviation $75,000. Give the 95-percent interval for their overall average income.

8. Lisa the Lyft driver gets an independent rating from each passenger. The scores are 5 with
probability .8 and 4 with probability .2 so her expected rating is 4.8. Give a 95-percent interval
for her average rating after 100 trips. Laura the Lyft driver’s scores are 5 with probability .9
and 1 with probability .1 so her expected rating is 4.6. Give the 95-percent interval for her
average after 100 trips. Hint: Laura’s scores fluctuate a lot more than Lisa’s.

9. A country has a million women who could have a child this year. Each (independently) gives
birth with probability .1. Compute the 95 percent interval for the number giving birth.

C. DETECTABILITY: In the variants below the (roughly) normal random variable N (for which
you gave a 95 percent interval) is replaced by a (roughly) normal Ñ with different mean but (roughly)
same standard deviation. Indicate the number of standard deviations (of N) by which the mean is
shifted. That is, compute (E[Ñ ]− E[N ])/SD(N). (Okay to give number without showing work.)
This describes how detectable the change is. (The corresponding 95-percent intervals overlap if this
number is less than 4; see http://rpsychologist.com/d3/cohend/ for vizualization.) And whether,
given independent instances of N and Ñ , the latter will be noticeably better with high probability.

1’. Alice stops studying altogether, which reduces her correctness probability from .8 to .08.

2’. Bob switches allegiance to the Boston Celtics, who average about 120 points per game.

3’. Carol hires a smarter quantitative analyst and increases expected returns to 8 percent.

4’. The restaurant remodels its interior, raising the expected Yelp score from 4.0 to 4.4.

5’. The university offers a nicer financial aid package, increasing expected yield to 66%.

6’. The patients take antiviral drugs that reduce expected duration from 10 to 9 days.

7’. The group of students takes 18.600, which makes them more savvy and productive by every
measure—and in particular increases their expected income by $7500.

8’. Both Lyft drivers begin offering free bottled water, which raises their expected scores by .08.

9’. To boost fertility, the country offers all new parents an UPPAbaby Vista V2 Stroller and a year
of free HBO (to watch while feeding the baby). Birth likelihood increases from .1 to .101.
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Remark: Does it disturb anyone that an effect as large as the one I snarkily attribute to 18.600 is
still too small too to reliably measure, even with an N = 100 randomized study?

Remark: When I first wrote this problem, Lyft computed a driver score based on the past 100 rides,
and Uber computed a score based on the past 500 rides. Both companies encouraged drivers to
maintain scores above 4.8. (Lower scores brought “needs improvement” flags from Lyft and
disqualified drivers from UberBLACK in New York. Accounts would be deactivated if scores got much
lower.) Many drivers (and passengers) worried a lot about chance fluctuations. It is disconcerting that
a single 4 is no big deal (some riders consider 4 a good score) but a 4 from half your riders gets you
fired. Alice finds it similarly disconcerting that even with study her 95-percent interval may span two
or three letter grades. Grades are noisy measurements, maybe more so than we would like. Actual
https://squared2020.com/2015/11/01/hypothesis-testing-is-nba-scoring-up-this-year/

NBA scores are roughly normal with mean above 100, SD about 12. Here unpredictability is part of
the appeal—better teams don’t always win. Note: shot clocks and court-crossing times might make
“time between shots” follow a non-exponential distribution—and may cause “number of shots taken”
to vary less than a Poisson of the same mean, at least outside of the game’s final minute. See
https://moldham74.github.io/AussieCAS/papers/Gon.pdf. Also, “possessions per team” are not
independent for two opposing teams, and one has to account for this to model win probabilities. See
https://www.teamrankings.com/nba/stat/points-per-game for current stats. Many countries are
trying to increase fertility by taking measures to make children more affordable for those who want
them. But it is expensive to offer measures large enough to make an observable difference, and it is
hard to separate the impact of such measures from the impact of other social/economic trends.

Remark: Here is another model for Alice’s grade: suppose Alice has an ability level x ∈ [0, 100], and
each problem has a difficulty level y ∈ [0, 100], and Alice solves the problem with probability 1 if
x > y and with probability 0 otherwise. If the exam problems have difficulties 1, 2, . . . , 100 then
Alice’s score is the integer part of x with probability one. Unlike the model above, this one predicts
that repeated tests yield the same score. (This can be checked empirically; google inter-rater
reliability.) In reality, even with careful design, it is not possible to make an exam perfectly reliable in
this way. (A test that just measures one’s height in centimeters would be nearly perfectly reliable but
would still have some measurement error.)

Remark: See https://www.act.org/content/dam/act/unsecured/documents/Research-Letter-
about-ACT-Writing.pdf for an ACT reliability study (from when essay had a 36-pt scale). It writes:

1. A score of 20 on the ACT composite would indicate that there is a two-out-of-three chance that
the student’s true score would be between 19 and 21.

2. A score of 20 on ACT math, English, reading or science would indicate that there is a
two-out-of-three chance that the student’s true score would be between 18 and 22.

3. A score of 20 on ACT writing would indicate that there is a two-out-of-three chance that the
student’s true score would be between 16 and 24.

The writing score was especially noisy. Roughly doubling interval width to get a 95 percent interval,
one might phrase it this way: A score of 28 on writing would indicate a 95 percent chance that the
student’s true score would be between 20 (below average at most colleges) and 36 (best possible). Some
argue that even noisy measurements are informative, and should be used but given low weight—just
as though the essay were one of many exam problems. (Recall the previous problem set settings,
where the noisier a measurement is, the less one changes conditional expectation in response to it.)
Others argue that noisiness causes stress and all but forces students to take exams multiple times.
Other measurements (interviews, letters, scores based on extracurriculars, etc.) might be just as noisy,
but the noise may be harder to quantify. Last I checked, MIT does not require ACT or SAT essays.
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D. STUDY DESIGN WITH RESOURCE SCARCITY: On Blueberry Planet, researchers plan
to assemble two groups with N people each. Each group will take a fitness test before and after a six
month period. Let A1 be the average fitness improvement for the control group and A2 the average
fitness improvement for a group assigned to eat blueberries. The improvement for each individual in
the control group is an independent random variable with variance σ2 and mean µ. The improvement
for each individual in the blueberry eating group is an independent random variable with variance σ2

and mean µ+ rb where r is an unknown parameter and b is the number of blueberries the blueberry
eaters are assigned to eat each day. (We are assuming a linear dose response so 2 blueberries have
twice the effect of 1 blueberry, etc.) Assume N is large enough so that A1 and A2 are approximately
normal with given means and variances. Suppose that there is a limited research budget for
blueberries, so Nb is fixed. For the purpose of estimating the size of r, would it be better to take N
large and b small, or to take N small and b large? Explain.

Remark: Realistically, the linearity of the dose response probably only holds up to a certain point,
and there is some practical upper bound on b. Also, it is unlikely that blueberries would really be the
most expensive part of this experiment. But if one replaces “blueberries” with years of exposure to a
new educational technique (which requires training teachers, etc.) or a new crime prevention
technique, it might make sense to assume Nb is limited.

Remark: Drug abuse programs like DARE would be worth their cost even if they only saved a few
people. But it is hard to say (google is DARE effective empirically) how measurable the effects are.
Could it be that (like so many things educators and parents do...) it has a long term effect that is
large enough to matter but too small to reliably detect with the experiments we can do? If the effect
is not empirically detectable, can we be sure it is positive and not negative? This is not just an issue
for DARE. Try googling is diversity training effective empirically or is anti-harassment training
effective empirically. There is a lot of literature on these complex and challenging topics.

E. STUDY DESIGN WHEN YOU WANT A LOW p-VALUE: Interpret/justify the following:
the p-value computed from a simple experiment (as described in the intro to this pset) is a random
variable. If an effect size is large enough so that the median p-value is Φ(−2) then in a similar trial
with 6.25 times as many participants the median p-value would be Φ(−5).

Remark: In a previous problem set, we discussed Cautious Science Planet and Speculative Science
Planet, where hypotheses with different a priori likelihood were tested. Another way two planets
could differ is in the p-value they use to define significance. Should medicine and other sciences should
adopt the 5σ standard used in physics (and somehow assemble the resources to make their data sets
6.25 times larger) or maybe an even stricter standard? This would lead to a much smaller number of
positive findings, but the findings would be more trustworthy. On the other hand, if you google Is the
FDA too conservative or too aggressive? you can read an argument by an MIT professor and student
that the FDA should approve drugs for incurable cancers (when the patient will die anyway without
treatment) using a lower standard of evidence than they currently use. A more general question (does
exercise alleviate depression?) might be addressed using many kinds of experiments. Some argue that
many small experiments are more informative than one large one, since the idiosyncracies of the
experiment designs average out; but meta-analysis (combining multiple studies to get a conclusion) is
a tricky art, and there may be a lot of bias in what is and isn’t published.
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F. PUBLICATION BIAS: Harry knows that either Hypothesis X is true, and a test will give a
positive answer 80 percent of time, or Hypothesis X is false, and a test will give a positive answer 5
percent of the time. Harry thinks a priori that Hypothesis X is equally likely to be true or false.
Harry does his own test and the result is positive.

(a) Given that the test is positive, what is Harry’s revised assessment of the probability that
Hypothesis X is true?

Sherry also thinks a priori that Hypothesis X is equally likely to be true or false. Sherry knows (from
her research world connections) that exactly ten groups (including Harry’s) have conducted
independent tests of the kind that Harry conducted. She knows that they have all had ample time to
publish the results, but she has not yet heard the results. Sherry has electronic access to the
prestigious We Only Publish Positive and Original Results Medical Journal (WOPPORMJ). Sherry
knows that each group with a positive test would immediately submit to WOPPORMJ, which would
publish only the first one received. So WOPPORMJ will have a publication if and only if at least one
of the tests was positive. Sherry opens WOPPORMJ and finds an article (by Harry) announcing the
positive result.

(b) Given Sherry’s new information (that at least one of the ten tests was positive), what is Sherry’s
revised assessment of the probability that Hypothesis X is true?

That evening, Sherry and Harry meet for the first time at a party. They discuss their revised
probability estimates. Harry tells Sherry that he is upset that she has not raised her probability
estimate as much as he has. They decide to try to come up with a revised probability using all of the
information they have together. The conversation starts like this:

1. Harry: I computed my probability with correct probabilistic reasoning. Then you came along
and said you knew that nine other teams tested for X, but you don’t know anything about what
they found. You have given me no new information about Hypothesis X and thus no reason to
change my assessment of the probability it is true.

2. Sherry: I computed my probability with correct probabilistic reasoning. When I did my
computation, I knew that WOPPORMJ had accepted a paper by someone named Harry. I have
learned nothing by meeting you and see no reason to change my view.

But, being smart and curious people, they continue to talk and reason together.

(c) Assuming that they both apply sound logic, what happens? Do they end up both agreeing with
Sherry’s probability estimate, or both agreeing with Harry’s estimate, or both agreeing on
something else, or continuing to disagree in some way? (There is a hint on the next page, but
don’t look at it before you need to.)

Remark: Some people think that all experimental data should be published—regardless of whether
it is negative or unoriginal (and also regardless of whether it is bad for the financial bottom line or the
political agenda of the group funding the study...) Look up “clinical trials registry” to read about
relevant efforts this direction.

HINT ON NEXT PAGE
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HINT: You actually need another assumption to pin down the answer. First solve the problem with
the first assumption below (which may be what you were tacitly assuming anyway). Then solve it
with the second assumption, which will give you a different answer.

1. The order in which the ten groups completed their tests was a priori random (all 10!
permutations equally likely and independent of hypothesis truthfulness and test outcomes). So
to describe a state space element, one needs to know the truthfulness of Hypothesis X (two
possibilities), the outcomes of the 10 tests (210 possibilities), and the submission order (10!
possibilities). So |S| = 2 · 210 · 10!. Harry had no idea before submitting his paper what the
ordering was, and Harry and Sherry have no further information about that (beyond the fact
that they know Harry’s paper was accepted).

2. Harry knows that his was the first group to complete the test.

G. ELECTORAL CONFUSION AND THE FAMOUS ROC AUC: An election has two
candidates, Alice and Bob. Votes are counted in two equal batches. Let Ni be the number of surplus
votes for Alice in Batch i and model N1 and N2 as i.i.d. mean-zero, variance-one normal random
variables. Alice wins if and only if N1 +N2 > 0. Imagine that you had to guess whether Alice wins
but you were only allowed to see N1. Your first instinct is to guess “Alice” if N1 > 0 and “Bob” if
N1 < 0. But if false positives (i.e., false Alice guesses) are more or less expensive than false negatives
(e.g. maybe for some reason it is especially bad for your network if you guess Alice is the winner and
she loses) you might choose a different cutoff c, and then say “Alice” if N1 > c and “Bob” if N1 < c.

1. Compute (as a function of c) the conditional probability FP (c) of predicting a false positive
(given that the overall outcome is negative) and the conditional probability FN(c) of seeing a
false negative (given that the overall outcome is positive). Hint: The value Φ will be part of
your answer, and you’ll need to use the symmetry of the normal distribution.

2. Medium info: Give an equation for the curve that
(
FP (c), FN(c)

)
traces out as c varies from

−∞ to ∞. This curve lives in the box [0, 1]× [0, 1] and goes from the top left corner to the lower
right corner. Draw a rough sketch of the curve; you can use graphing software if you like.
HINT: This curve doesn’t depend on N1 and N2 being normal; it would be the same if N1 and
N2 were i.i.d. samples from another continuous probability distribution symmetric about zero.

3. Perfect info: Suppose you have perfect information, and you base your guess on N = N1 +N2

instead of N1. You pick a c and and decide to guess Alice if N > c and Bob if N < c. (For some
reason you knowingly guess incorrectly if N is between c and 0.) Draw the

(
FP (c), FN(c)

)
curve corresponding to this approach. Does it trace the boundary of [0, 1]× [0, 1]?

4. No info: Imagine that you don’t know any information, so you just pick a c, and then you
sample an independent normal random variable N3 (unrelated to N1 and N2) and report “Alice”
if N3 > c and Bob otherwise. Draw the

(
FP (c), FN(c)

)
curve corresponding to this scenario.

Check that your curve from 2 lies in between the extreme curves from 3 and 4.

Remark: Machine learning often invokes a confusion matrix whose entries pi,j encode the probability
that an element in category i is (mis)identified as category j. With two categories (positive and
negative, or Alice and Bob) the confusion matrix is a 2× 2 matrix, and the false positives/negatives
are the off-diagonal elements. Since row sums are fixed (to be overall probability of positive/negative
outcome) there are only two degrees of freedom. This problem concerns the tradeoff between them.

Remark on ROC and AUC: In machine learning, instead of a number like N1, N or N3 you could
be given more complex data (an image file, a collection of numbers, etc.) and use a neural net to
generate a score from that. You can then empirically compute a curve showing the false-positive and
false-negative rates as one varies the cutoff. This curve (commonly shown upside down, so it relates
false positive and true positive rates) is called the receiver operating characteristic (ROC)
curve. The area under curve (AUC) measures how useful the score. is See e.g. https:
//developers.google.com/machine-learning/crash-course/classification/roc-and-auc
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Bonus remark: How do we know
√
2 is irrational? If

√
2 were rational, then there would be positive

integers a and b such that a
b =

√
2. This would imply

a2

b2
= 2 =⇒ a2 = 2b2 is even =⇒ a is even =⇒ c :=

a

2
is an integer and

c

b
=

√
2

2
=⇒ b

c
=

√
2.

Iterating would yield an infinite sequence of integers a, b, c, d, e . . . with
√
2 = a

b = b
c = c

d = d
e . . . and

a > b > c > d > e . . . This is impossible because if you start with a positive integer, you can only
decrease it (to a smaller positive integer) finitely many times. This musical recording of the above
sentences expands the absurd conclusion, suggesting that the rationality of

√
2 would end famine, war,

and death. https://math.mit.edu/~sheffield/2023600fall/Reductio_ad_absurdum.mp3 Another
way to get a contradiction is to first argue that there is a smallest pair a, b with a/b =

√
2 (no common

factors to cancel) and second invoke parity. https://www.math.utah.edu/~pa/math/q1.html.
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