
Correlation, regression, and paradox

18.600 Problem Set 8, due November 9

Welcome to your eighth 18.600 problem set! Let’s think about correlations. Given a population of people
who each have two attributes, like ACT and SAT scores, you can choose a member at random and interpret the
attributes of the person you choose as random variables. These variables have a correlation coefficient, which
you’d expect to be high for ACT and SAT scores (maybe about .87, per some site I googled).

How high is a .87 correlation really? Imagine X, Y1 and Y2 are independent standard normals. Imagine that
X is your “raw test-taking acumen” and X + aY1 is your score on one test and X + aY2 is your score on another
test, where the aYi are random noise terms. Then ρ(X+aY1, X+aY2) = 1/(1+a2), which is about .86 if a = .4.
In this case, the standard deviation of the “noise factor” is .4 times the standard deviation of the “raw ability
factor,” which may seem like quite a bit of noise (despite the fact that .86 seems pretty close to 1). Play the
game http://guessthecorrelation.com/ to get a sense of what different correlation levels look like.

Correlations inform beliefs. The strong observed correlations between cigarettes and early death (and specific
ailments like lung cancer) are a huge part of the of evidence that cigarettes are unhealthy. The discovery of the
unhealthiness of smoking has saved millions of lives — a win for observational statistics. (Also an embarrassment,
since it took until the second half of 20th century to make the case persuasively.)

On the other hand, we know the correlation does not imply causation cliché. The “spurious correlation”
website http://tylervigen.com illustrates this with strong correlations between seemingly unrelated annual
statistics like sociology doctorates and space launches, or pool drownings and Nicolas Cage films. The 2012 NEJM
article Chocolate consumption, Cognitive function, and Nobel Laureates (which presents a real country-to-country
correlation between chocolate consumption and Nobel prize winning) parodies the way observed correlations are
used in medicine (it’s only three pages; look it up). It earnestly walks the reader through causal hypotheses
(brain-boosting flavanoids), reverse causal hypotheses (chocolate consumed at Nobel prize celebrations) and
common demoninator hypotheses (geography, climate, economics), mostly dismissing the latter.

Alongside correlation does not imply causation one might add correlation does not imply correlation, or more
precisely, reported correlation in some data set does not imply correlation in the larger population, or correlation
that will persist in time. Google study “is linked to” and scroll through a few pages of hits. Some sound fairly
plausible (“walking/cycling to work linked to lower body fat”) but others raise eyebrows. Clicking through,
you find that sometimes the correlations are weak, the sample sizes small, the stories (at least at first glance)
far fetched. A news organization’s criteria for deciding which links to publicize may differ from those a careful
scientist would use to decide what to take seriously and/or study further (e.g. with randomized trials). Reader
beware.

This problem set will also feature moment generating functions, regression lines (which you will encounter
often in life) and a phenomenon called regression to the mean.

On a rather different note, many of you are familiar with Pascal’s wager. The idea is that if choosing A
over B comes with a finite cost but a positive probability (however small) of an infinite payoff, then one should
always choose A. Pascal’s conclusion was that if living a virtuous life leads (with even a tiny probability) to an
eternal reward, then it is a worthwhile sacrifice to make. A common criticism is that this kind of thinking can
lead to violence (killing heretics who might lead souls astray, or dissidents who might obstruct an endless Marxist
utopia) as well as virtue. A more mathematical concern is that in principle there may be many choices, each of
which we expect to do an infinite amount of good (and perhaps also an infinite amount of harm) and there is
no obvious mathematical way to compare the competing infinities.

The comparison difficulties associated with infinite expectations can arise even when the payoffs themselves
are finite with probability one (e.g., if the utility payout is a Cauchy random variable). This problem set illustrates
this point with a particularly vexing form of a famous envelope switching paradox. Interestingly, in this paradox,
the conditional expectations used for decision making are all finite; but a certain a priori expectation is infinite,
and that is the root of the paradox. I hope that you enjoy thinking about the story, and that it causes you at
most a finite amount of existential angst.
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A. TEXTBOOK CHAPTER SEVEN:

1. Problem 50: The joint density of X and Y is given by f(x, y) = e−x/ye−y

y , 0 < x < ∞, 0 < y < ∞.

Compute E[X2|Y = y].

2. Theoretical Exercise 29: Let X1, . . . , Xn be independent and identically distriuted random variables. Find

E[X1|X1 + . . .+Xn = x].

Remark: If X is a random variable then the function MX(t) := E[etX ] is called the moment generating
function of X. Moment generating functions play a central role in large deviation theory, which plays a central
role in information theory, data compression, and statistical physics. In this course, we use moment generating
functions (and the closely related characteristic functions) as tools for proving the central limit theorem and
the weak law of large numbers.

3. Theoretical Exercise 48: If Y = aX + b, where a and b are constants, express the moment generating
function of Y in terms of the moment generating function of X.

B. LEAST SQUARES REGRESSION: Suppose that X and Y both have mean zero and variance one, so
that E[X2] = E[Y 2] = 1 and E[X] = E[Y ] = 0.

1. Check that the correlation coefficient between X and Y is ρ = E[XY ].

2. Let r be the value of the real number a for which E[(Y − aX)2] is minimal. Show that r depends only on
ρ and determine r as a function of ρ.

3. Check that whenever Z has finite variance and finite expectation, the real number b that minimizes the
quantity E[(Z − b)2] is b = E[Z].

4. Conclude that the quantity E[(Y − aX − b)2] is minimized when a = r and b = 0.

Remark: We have shown that among all affine functions of X (i.e. all sums of the form aX + b for real a and
b) the one that best “approximates” Y in (in terms of minimizing expected square difference) is rX. This
function is commonly called the least squares regression line for approximating Y (which we call a “dependent
variable”) as a function of X (the “independent variable”). If r = .1, it may seem odd that .1X is considered
an approximation for Y (when Y is the dependent variable) while .1Y is considered an approximation for X
(when X is the dependent variable). The lines y = .1x and x = .1y are pretty different after all. But the lines
are defined in different ways, and when |r| is small, the correlation is small, so that neither line is an especially
close approximation. If r = 1 then ρ = 1 and both lines are the same (since X and Y are equal with
probability one in this case).

Remark: The above is easily generalized (by rescaling and translating the (X,Y ) plane) to the case that X
and Y have non-zero mean and variances other than one. The subject known as regression analysis
encompasses this generalization along with further generalizations involving multiple dependent variables, as
well as settings where a larger collection of functions plays the role that affine functions played for us.
Regressions are ubiquitous in academic disciplines that use data. Given data in a spreadsheet, you can compute
and plot regression lines with the push of a button (copy a chart into a free spreadsheet like sheets.google.com;
control click two distinct columns to highlight them; click the chart icon; then Customize, Series, Trendline...
or just google spreadsheet regression for instructions; or type “linear fit {1, 3}{2, 4}{4, 5}{3, 5}” into
wolframalpha for an example). For a more difficult setting, imagine you have a set of pictures, and a number
indicating how closely each picture resembles a cat. If you had a nice way to approximate this function (from
pictures to numbers) you could train your computer to recognize cats. Your procedure would likely be more
complicated than a simple regression — it may involve neural nets or other machine learning tools. Statistics
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and machine learning are hot topics, and may be part of your further coursework. (Note: even if your cat
recognizing algorithm is a complex neural net refined by hundreds of tinkering MIT alumni, you will still use
the math behind the “clinical trial” stories in this course when you test its effectivness.)

C. REGRESSION TO MEAN: Let X be a normal random variable with mean µ and variance σ2
1. Let Y

be an independent normal random variable with mean 0 and variance σ2
2. Write Z = X + Y . Let Ỹ be an

independent random variable with the same law as Y . Write Z̃ = X + Ỹ .

1. Compute the correlation coefficient ρ of Z̃ and Z.

2. Compute E[X|Z] and E[Z̃|Z]. Express the answer in a simple form involving ρ. Hint: consider case
µ = 0 first and find fX,Z(x, z). You know FX(x) and fZ|X=x(z). Alternate hint: if Xi are i.i.d. normal

with variance σ2, mean 0, and n ≥ k then argue by symmetry that E[
∑k

i=1Xi|
∑n

i=1Xi = z] = z(k/n).

Write X =
∑k

i=1Xi and Y =
∑n

k+1Xi. Fiddle with k, n, σ2 to handle the case that σ2
1/σ

2
2 is rational.

Note that E[Z̃|Z] is closer to E[Z̃] = E[Z] than Z is. This is a case of what is called “regression to the mean.”
Let’s tell a few stories about that. An entrant to a free throw shooting competition has a skill level that we
denote by X, which is randomly distributed as a normal random variable with mean µ and variance 2. During
the actual competition, there is an independent luck factor that we denote by Y , which is a normal random
variable with variance 1 and mean zero. The entrant’s overall score is a Z = X + Y . If the entrant participates
in a second tournament, the new score will be Z̃ = X + Ỹ where Ỹ is an independent luck factor with the same
law as Y .

3. Compute the standard deviation of Z. Given that Z is two standard deviations above its expectation,
how many standard deviations above its expectation do we expect Z̃ to be?

Imagine that people in some large group are randomly assigned to teams of 9 people each. Each person’s skill
level is an i.i.d. Gaussian with mean 0 and standard deviation 1. The team’s skill level is the sum of the
individual skill levels. You can check that a team’s skill level is a Gaussian random variable with mean 0 and
standard deviation 3.

4. Given that a team’s total skill level is 6 (two standard deviations above the mean for teams) what do we
expect the skill level of a randomly chosen team member to be?

Each drug generated by a lab has an “true effectiveness” which is a normal random variable X with variance 1
and expectation 0. In a statistical trial, there is an independent “due-to-luck effectivness” normal random
variable Y with variance 1 and expectation 0, and the “observed effectiveness” is Z = X + Y .

5. If we are given that the observed effectiveness is 2, what would we expect the observed effectiveness to be
in a second independent study of the same drug?

Remark: This is from the abstract of the Nosek reproducibility study (recall Problem Set 3) which tried to
reproduce 100 published psychology experiments: “The mean effect size (r) of the replication effects (Mr =
0.197, SD = 0.257) was half the magnitude of the mean effect size of the original effects (Mr = 0.403, SD =
0.188), representing a substantial decline.” The fact that the effect sizes in the attempted replications were
smaller is not surprising from a regression to the mean point of view. Google Iorns reproducibility for analogous
work on cancer studies.

D. CELERY: On Smoker Planet, each person decides at age 18, by a fair coin toss, whether or not to become
a life long cigarette smoker. A person who does not become a smoker will never smoke at all and will die at a
random age, the expectation of which is 75 years, with a standard deviation of 10 years. If a person becomes a
smoker, that person will smoke exactly 20 cigarettes per day throughout life, and the expected age at death
will be 65 years, with a standard deviation of 10 years.
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1. On this planet, let S ∈ {0, 20} be cigarettes smoked daily, and let L be life duration. What is the
correlation ρ(S,L) := Cov(S,L)/

√
Var(S)Var(L)? Hint: Start by using the identity

Var(L) = Var(E[L|S]) + E[Var(L|S)] from lecture to get Var(L). Working out Var(S) shouldn’t be hard.
Then attack the two terms of Cov(S,L) = E[SL]− E[S]E[L]. Note that
E[SL] = P{S = 0}E[SL|S = 0] + P{S = 20}E[SL|S = 20].

On Bad Celery Planet, it turns out that (through some poorly understood mechanism) celery is unhealthy. In
fact, a single piece of celery is as unhealthy as a single cigarette on Smoker Planet. However, nobody eats 20
pieces a day for a lifetime. Everybody has a little bit, in varying amounts throughout life. Here is how that
works. Each year between age 18 and age 58 a person tosses a fair coin to decide whether to be a celery eater
that year. If the coin comes up heads, that person will eat, on average, one piece of celery per day for the
entire year (mostly from company vegetable platters). Given that one consumes celery for K of the possible 40
years (celery consumption after age 58 has no effect, and everyone lives to be at least 58) one expects to live
until age 75−K/80, with a standard deviation of 10 years. (So, indeed, eating 1 celery stick per day for the
full 40 years is about 1/20 as harmful as smoking 20 cigarettes a day for a lifetime.)

2. Write L for a person’s life duration. On this planet, what is the correlation
ρ[K,L] = Cov[K,L]/

√
Var(K)Var(L)? Hint: Use the Var(L) = Var(E[L|K]) + E[Var(L|K)] identity

from lecture to get Var(L). Working out Var(K) shouldn’t be hard. Then attack
Cov(K,L) = E[KL]− E[K]E[L] as in 1. Note that E[KL] =

∑40
k=0 P{K = k}E[KL|K = k] which is∑40

k=0 P{K = k}kE[L|K = k] =
∑40

k=0 P{K = k}k(75− k/80) = E[K(75−K/80)]. Maybe you can argue
that E[L] = E[75−K/80] and that Cov(K,L) = Cov(K, 75−K/80).

Remark: The answer to 2 is much smaller than the answer to 1. So small that it would be very hard to
demonstrate this effect without a huge sample size. You would need several hundred thousand to be confident
that you would see a statistically significant correlation. In the real world, people worry that many products
have mild carcinogenic effects (effects in the ominous “big enough to matter, small enough to be hard to
observe”) category. Detectability is a big problem. Moreover, even if you observe the effect in a large sample,
people will note that those who eat more celery are statistically different from those who eat less (more health
conscious, more prone to eat carrots and ranch dressing, etc.) The effects of these differences could easily
swamp any effects of the celery itself. One try to “control” for obvious differences (e.g., with multi-variable
regressions) but one cannot account for all of them, and the question of what to do about observed correlation
is famously hard. For example, the World Health Organization website says the following about red meat:
“Eating red meat has not yet been established as a cause of cancer. However, if the reported associations were
proven to be causal, the Global Burden of Disease Project has estimated that diets high in red meat could be
responsible for 50,000 cancer deaths per year worldwide. These numbers contrast with about 1 million cancer
deaths per year globally due to tobacco smoking, 600,000 per year due to alcohol consumption, and more than
200,000 per year due to air pollution.” Shall I eat that burger or not?

E. ADMISSIONS: This problem will apply the “regression to the mean” ideas from the last problem to a toy
model for university admissions. Think about admissions at a (somewhat arbitrarily chosen) group of five
selective universities: Harvard, Stanford, Chicago, MIT and Princeton. For the most recent class, these
universities all had (per collegeevaluator.com) “yield rates” between 69 and 85 percent and class sizes between
1148 and 1894. If we refer to an admission letter to one of these five universities as a golden ticket then in all
9600 golden tickets were issued and 7736 were used (i.e., a total of 7736 first year students enrolled at these
schools). This means there were 1864 unused golden tickets.

Who had these 1864 unused golden tickets? Somebody presumably has a rough answer, but let’s just speculate.
One wild possibility is that all unused tickets were held by 373 lucky students (with 5 unused golden tickets
each) who all chose to attend state schools instead. If this were true, then none of the 7736 golden ticket users
would have an extra unused ticket. Another extreme possibility is that exactly 1864 of the 7736 golden ticket
users (about 24 percent) have exactly one unused ticket. In any case, the fraction of golden ticket users with an
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unused ticket to spare is between 0 and .24, which implies that the overwhelming majority of these 7736
entering students were accepted to the university they attend and to none of the other four. The stereotypical
“students who apply to all five, get accepted to most” are a tiny minority. What if I throw in Penn, Yale,
Brown, Columbia and Cornell? In that case number of unused tickets is about .38 times the number of used
tickets. Again the vast majority of the students accepted to at least one of these ten schools were accepted to
only one. These even works for an appropriately chosen set of 20 schools. Why is it so hard to get into more
than one high yield school? Do colleges use signals (geography, early admissions, legacy, apparent fit, etc.) to
identify and accept students who “would attend if accepted” (see pset 3)? Or it is possible that universities
mostly value the same thing but admissions are just subjective? Let us explore the latter possibility in an
imaginary (and perhaps not terribly similar) universe where the analysis is simpler. Then we’ll do a little math.

In Fancy College Country there are exactly five elite universities and 40,000 elite applicants. All 40,000
applicants apply to all five universities. The intrinsic strength of an applicant’s case is a normal random
variable X with mean 0 and variance 1. When a university reads the application, the university assigns it a
score S = X + Y where Y is an independent normal random variable with mean 0 and variance 1. Think of X
as the college-independent part of an application’s strength and Y as the college-dependent part (perhaps
reflecting the resonance of the student’s background with university-specific goals, as well as the random mood
of the admission team). Each student has one value X but gets an independent Y value for each university.
Each university admits all applicants with scores above the 95th percentile in score distribution. Since S has
variance 2, this means they admit students whose scores exceed C = Φ−1(.95) ·

√
2 ≈ 1.6449 ·

√
2 ≈ 2.326 where

Φ(a) = (2π)−1/2
∫ a
−∞ e−x2/2dx. To be admitted a student’s score must exceed 2.326. Each university expects to

admit 5 percent of its applicants.

1. Compute, as a function of x, the conditional probability that the student is admitted to the first
university in the list, given that the student’s X value is x. In other words, compute the probability that
Y > C − x.

2. How large does X have to be for this conditional probability to exceed .05? How about .95? Find the
probability that X exceeds the former threshold. And the latter. (Give numerical answers. Note the
discrepancy: given their X values, many students have a .05 chance, but very few have a .95 chance. It is
easier to be a contender than a sure thing.)

3. Let A(x) be the conditional probability that the student is admitted to at least one university on the list,
given that the student’s X value is x. Compute A(x) using Φ and C as defined above.

4. Argue that the overall probability that a student is admitted to at least one university is given by∫∞
−∞(1/

√
2π)e−x2/2A(x)dx and that the chance to be rejected by all universities is∫∞

−∞(1/
√
2π)e−x2/2(1−A(x))dx.

5. Try to compute 4 numerically in a package like wolframalpha and report how it goes. You might (I did)
have to fiddle a bit to get it to work. Here’s how I did it:

(a) To see how wolframalpha represents Φ(x) type in

Integrate[(1/Sqrt[2Pi]) E^(-y^2/2), {y,-Infinity, x}]

You get some expression involving erf, which is a close relative of Φ.

(b) Click on that to get plaintext. Replace x with (2.326− x) to get

1/2 (1+erf((2.326-x)/sqrt(2)))

(c) Put parentheses about this and raise it to fifth power (to get a wolframalpha friendly expression for
conditional chance to be rejected everywhere, given x), multiply by fX(x) and integrate:
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Integrate[(1/sqrt(2Pi)) E^(-x^2/2)

(1/2 (1+erf((2.326-x)/sqrt(2))))^5, {x,-Infinity, Infinity}]

6. Briefly justify the following conclusions. Each student has a 0.166363 chance to be accepted at least
somewhere. The expected number of students admitted to at least one university is about 6655. The
expected class sizes are about 1331 at each school, and each university has a typical yield rate of about
.67.

Remark: If admission were completely random (each university takes a student with probability .05
independently of X) then the applicants would have a 1− (.95)5 ≈ .2262 chance to get accepted to at least one
university. We’d expect to see .2262 · 40000 ≈ 9048 students admited to at least one university, and the yield
rate for each university would be roughly .9048. If the selection process were completely determined by X (so
that all universities accept exactly the same 2000 students) then there would be only 2000 students admitted
to at least one university and the yield rate would be .2 (with class sizes of only 400). Our .67 lies between
these extremes.

Remark: Suppose the score were X + aY for some a > 0. Small a means universities mainly use the same
objective data (X). Large a means they mainly use subjective/idiosyncratic criteria (Y ). Can admissions
debates (e.g., how much to use test scores vs. school-specific essays, etc.) be framed as questions about how
large a should be? Large a may have advantages (high yield rates, people with range of X values get to know
each other) and disadvantages (admissions unpredictable, students have to apply many places) even aside from
the question of how X and Y correlate with other things we value. Real world admissions are more complex
than the toy model in this problem. Should we switch to a matching system like medical residency?
https://www.nrmp.org/matching-algorithm/.

F. ENVELOPES: The following is one formulation of a famous “two envelope” paradox. Jill is a
money-loving individual who, given two options, invariably chooses the one that gives her the most money in
expectation. One day Harry, a trusted (and capable of delivering) individual, offers her the following deal as a
gift. He will secretely toss a fair coin until the first time that it comes up tails. If there are n heads before the
first tails, he will place 10n dollars in one envelope and 10n+1 dollars in the second envelope. (Thus, the
probability that one envelope has 10n dollars and the other has 10n+1 dollars is 2−n−1 for n ≥ 0.) Harry will
then hand Jill the pair of envelopes (randomly ordered, indistinguishable from the outside) and invite her to
choose one. After Jill chooses an envelope she will be allowed to open it. Once she does, she will be allowed to
either keep the money in the first envelope or switch to the second envelope and keep whatever is in the second
envelope. However, if she decides to switch, she has to pay a one dollar “switching fee.”

1. If Jill finds 100 dollars in the first envelope she opens, what is the conditional probability that the other
envelope contains 1000 dollars? What is the conditional probability that the other envelope contains 10
dollars?

2. If Jill finds 100 dollars in the first envelope she opens, how much money does Jill expect to win from the
game if she does not switch envelopes? (Answer: 100 dollars.) How much does she expect to win (net,
after the switching fee) if she does switch envelopes?

3. Generalize the answers above to the case that the first envelope has 10n dollars (for n ≥ 0) instead of 100.

4. Jill concludes from the above that, no matter what she finds in the first envelope, she will expect to earn
more money if she switches envelopes and pays the one dollar switching fee. This strikes Jill as a bit odd.
If she knows she will always switch envelopes, why doesn’t she just take the second envelope first and
avoid the envelope switching fee? How can she be maximizing her expected wealth if she spends an
unnecessary “switching fee” dollar no matter what? How does one resolve this apparent paradox? (Use
the hints in the Lecture 24 slides as needed. Even with hints, it may take time to make peace with this.)
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