
Fall 2023 18.600 Final Exam: 100 points
Carefully and clearly show your work on each problem (without writing anything that

is technically not true) and put a box around each of your final computations.

NAME:



1.(10 points) Carl is preparing for an important biology exam. While attempting to focus, Carl has
six states: (i) diligently studying, (ii) browsing social media, (iii) following the news, (iv) reading
email, (v) answering text messages, and (vi) absentmindedly checking the refrigerator. Every 60
seconds, Carl randomly updates his state as follows: if he is in state (i) — studying — he stays
there with probability 5/6 and switches to each of the other 5 states with probability 1/30. If he is
in one of states (ii) to (vi), he stays in that state with probability 1/2 and switches to each of the
other 5 with probability 1/10.

(a) Write the transition matrix M corresponding to Carl’s update procedure.

(b) If Carl is diligently studying now, what is the expected number of updates until he first
switches to a different state (and is no longer studying)?

(c) If Carl is browsing social media now, what is the expected number of updates until Carl is
studying again?

(d) Over the long haul, what fraction of the time does Carl spend in each of the six states?



2. (10 point) Harry is hosting a party when he spots a stylish cash-only burrito truck. In a
moment of generosity he shouts, “Burritos on me!” He gets nervous when he sees the prices:

Sweet potato and black bean burrito: $17

Chipotle shrimp and feta burrito: $19

Teriyaki tofu and edamame burrito: $20

Sweet potato and black bean burrito with guacamole: $21

Chipotle shrimp and feta burrito with guacamole: $23

Harry knows that each of his 25 friends will (independently of the others) order each of the five
burrito types with equal likelihood.

(a) Let Ai be the price of the ith friend’s burrito. Compute the mean and variance of A1.

(b) Compute the mean and variance of the total price A = A1 +A2 + . . .+A25.

(c) Use a normal approximation to estimate the probability that the $510 in Harry’s wallet will
cover the bill. You can use the function Φ(a) :=

∫ a
−∞

1√
2π
e−x2/2dx in your answer.

(d) Estimate the probability that Harry’s cash will cover the burritos for his friends and a
teriyaki tofu and edamame burrito for himself.



3. (10 points) A college dorm has 8 floors. Each floor can house 12 students. However, there are
only 9 students living on each floor now (for a total of 8× 9 = 72 students). Dorm Supervisor Alice
says, “Instead of 8 partially full floors, we should have 6 full floors and 2 empty floors. Then we
can turn the empty floors into epic banana lounges.” Alice devises a way to make that happen.
Each day she will choose a pair of floors at random, uniformly from the set of

(
8
2

)
= 28 pairs. If

each of the two floors has between 1 and 11 students, Alice will pick one of the two floors (with a
fair coin toss) and transfer a student from that floor to the other floor. If either floor has 0 or 12
students, nothing is done on that day.

Let An be the number of students on Floor 1 after n days. (So A0 = 9 with probability 1, but A1

could be 8, 9 or 10.) Let Kn be the number of times a student is moved into or out of Floor 1
during the first n days. (So K0 = 0 with probability 1, but K1 could be 1 or 0.)

(a) Which of the following is a martingale? (Just circle the corresponding numbers.)

(i) 12An

(ii) 12Kn

(iii) An + 12Kn

(iv) A2
n −Kn

(v) 12An −A2
n +Kn

(vi) 54

(vii)
∑n

i=1Ai

(b) Let T be the first time at which An reaches 0 or 12. Compute the expectation E[KT ]. Hint:
Use one of the above martingales.

(c) Let S be the first time at which all floors contain 0 or 12 students. Let N be the total
number of days on which a move has occurred (between any pair of floors) by time S.
Compute the expectation E[N ]. Hint: you can use additivity of expectation but be careful
about double counting.



4. (10 points) Bonnie plans to randomly select holiday gifts for her 10 grandchildren. She will give
each grandchild

(i) a Walmart gift card with probability 1/2

(ii) a box of chocolate-covered cinnamon bears with probability 1/4

(iii) an internet-enabled hairbrush with probability 1/8

(iv) a pair of hand-knit wool socks with probability 1/32

(v) a vintage Bruce Springsteen record with probability 1/32

(vi) a front row ticket to Renaissance: A Film by Beyoncé with probability 1/32

(vii) a DVD recording of The Princess Bride with probability 1/32

and the choices will be independent from one child to the next. Let Gi be the type of gift given to
the ith grandchild. Write G for the ordered list (G1, G2, . . . , G10).

(a) Compute the entropy H(G1) and H(G).

(b) Suppose you want to determine G with a sequence of yes or no questions. What strategy
minimizes the expected number of questions you have to ask? What is the expected number
of questions needed in this case?

(c) What is the probability that exactly one grandchild gets a Springsteen record?



5. (10 points) Let X be an exponential random variable with parameter λ = 1. For each real
number K write C(K) = E[max{X −K, 0}].

(a) Compute C(K) as a function of K for K ≥ 0.

(b) Compute the derivatives C ′ and C ′′ on [0,∞).

(c) Compute the expectation E[X3 + 3X2 + 3X + 1].



6. (10 points) An exam has 25 problems, all equally difficult. Let Ti be the score that Terry the
Test Taker earns on the ith problem. Assume that T1, T2, . . . , T25 are i.i.d. random variables with
mean µ and variance σ2. Let T =

∑25
i=1 Ti be Terry’s total test score.

(a) Compute the correlation coefficient ρ(T1, T ).

(b) Express the conditional expectation E[T1|T ] as a function of T .

(c) Compute the covariance Cov(T1 + 2T2 + 3T3 + 9, T1 + T2 + T3 + 7)

(d) If we are given that T is R standard deviations above its mean, then how many standard

deviations do we expect T1 to be above its mean? In other words, write R = T−E[T ]
SD(T ) and

R1 =
T1−E[T1]
SD(T1)

and express the random variable E[R1|R] in terms of R. Hint: The answer
comes out to be a constant times R.



7. (10 points) Suppose that the pair (X,Y ) has joint probability density function
f(x, y) = 1

π(1+x2)
· 1
π(1+y2)

.

(a) Compute the probability that the pair (X,Y ) belongs to the unit box [0, 1]× [0, 1].

(b) Compute the probability that the pair (X,Y ) belongs to the infinite diagonal strip
S = {(x, y) : −2 < x+ y < 2}.

(c) Express the expectation E[sin(XY )] as a double integral: you don’t have to explicitly
evaluate the integral.



8. (10 points) Carol is a competitive basketball player, but she is prone to verbal outbursts. At
successive times A1, A2, . . . she shouts, “Argh!” At times B1, B2, . . . she shouts, “Blimey!” and at
times C1, C2, . . . she shouts “Curses!” Assume that the times Ai, the times Bi and the times Ci are
independent Poisson point processes with respective intensities λA = 1/hour, λB = 2/hour and
λC = 3/hour.

(a) Compute the probability that, during 2 hours of play, Carol uses “argh,” “blimey” and
“curses” exactly 4 times each.

(b) Write down the density function for Carol’s first vocal outburst. In other words, write fX
where X = min{A1, B1, C1}.

(c) Write the covariance Cov(A1 +B2 + C3, A3 +B2 + C1).

(d) The coach decides to withdraw Carol from play after the third time she says “curses” (there
are children present after all). What is the probability density function for the amount of
play (in hours) until this happens? In other words, what is fC3?



9. (10 points) Ten friends remove their shoes before entering a Japanese restaurant. When they
leave, they are each given a pair of shoes—one left shoe and one right shoe. However, the left shoes
have been randomly permuted (all 10! permutations equally likely) and the right shoes have been
independently randomly permuted (all 10! permutations equally likely). Let A be the number of
people who get both of their own shoes back.

(a) Compute the expectation E[A]. Hint: If it helps, you can write Ai for the random variable
that is 1 if the ith person gets both of their own shoes back, 0 otherwise.

(b) Compute the expectation E[A2].

(c) Let B be the number of people who are given a left shoe and a right shoe that match one
another (i.e. two shoes that originally had the same owner). Compute E[AB].



10. (10 points) At the end of a long semester, after 300 students take a final exam, the graders
decide to save time by assigning grades randomly. They sample X1, X2, . . . X300 as i.i.d. uniform
random variables on [0, 1] and assign the ith student the score Xi. Write S =

∑300
i=1Xi for the total

of the scores and A = S/300 for the average.

(a) Compute the moment generating function MX1(t).

(b) Compute the moment generating functions MS(t) and MA(t).

(c) Let L be the largest of the Xi and compute the density function fL.

(d) Compute the standard deviation of S. Use the central limit theorem to approximate the
probability that S > 165 (so that the class average A is higher than 55 percent). You can use
the function Φ(a) :=

∫ a
−∞

1√
2π
e−x2/2dx in your answer.


