18.600: Lecture 36-37
 Review: practice problems

Scott Sheffield

MIT

Expectation and variance

- Eight athletic teams are ranked 1 through 8 after season one, and ranked 1 through 8 again after season two. Assume that each set of rankings is chosen uniformly from the set of 8 ! possible rankings and that the two rankings are independent. Let N be the number of teams whose rank does not change from season one to season two. Let N_{+}the number of teams whose rank improves by exactly two spots. Let N_{-}be the number whose rank declines by exactly two spots. Compute the following:

Expectation and variance

- Eight athletic teams are ranked 1 through 8 after season one, and ranked 1 through 8 again after season two. Assume that each set of rankings is chosen uniformly from the set of 8 ! possible rankings and that the two rankings are independent. Let N be the number of teams whose rank does not change from season one to season two. Let N_{+}the number of teams whose rank improves by exactly two spots. Let N_{-}be the number whose rank declines by exactly two spots. Compute the following:
- $E[N], E\left[N_{+}\right]$, and $E\left[N_{-}\right]$

Expectation and variance

- Eight athletic teams are ranked 1 through 8 after season one, and ranked 1 through 8 again after season two. Assume that each set of rankings is chosen uniformly from the set of 8 ! possible rankings and that the two rankings are independent. Let N be the number of teams whose rank does not change from season one to season two. Let N_{+}the number of teams whose rank improves by exactly two spots. Let N_{-}be the number whose rank declines by exactly two spots. Compute the following:
- $E[N], E\left[N_{+}\right]$, and $E\left[N_{-}\right]$
- $\operatorname{Var}[N]$

Expectation and variance

- Eight athletic teams are ranked 1 through 8 after season one, and ranked 1 through 8 again after season two. Assume that each set of rankings is chosen uniformly from the set of 8 ! possible rankings and that the two rankings are independent. Let N be the number of teams whose rank does not change from season one to season two. Let N_{+}the number of teams whose rank improves by exactly two spots. Let N_{-}be the number whose rank declines by exactly two spots. Compute the following:
- $E[N], E\left[N_{+}\right]$, and $E\left[N_{-}\right]$
- $\operatorname{Var}[N]$
- $\operatorname{Var}\left[N_{+}\right]$

Expectation and variance - answers

- Let N_{i} be 1 if team ranked i th first season remains i th second seasons. Then $E[N]=E\left[\sum_{i=1}^{8} N_{i}\right]=8 \cdot \frac{1}{8}=1$. Similarly, $E\left[N_{+}\right]=E\left[N_{-}\right]=6 \cdot \frac{1}{8}=3 / 4$

Expectation and variance - answers

- Let N_{i} be 1 if team ranked i th first season remains i th second seasons. Then $E[N]=E\left[\sum_{i=1}^{8} N_{i}\right]=8 \cdot \frac{1}{8}=1$. Similarly, $E\left[N_{+}\right]=E\left[N_{-}\right]=6 \cdot \frac{1}{8}=3 / 4$
- $\operatorname{Var}[N]=E\left[N^{2}\right]-E[N]^{2}$ and

$$
E\left[N^{2}\right]=E\left[\sum_{i=1}^{8} \sum_{j=1}^{8} N_{i} N_{j}\right]=8 \cdot \frac{1}{8}+56 \cdot \frac{1}{56}=2 .
$$

Expectation and variance - answers

- Let N_{i} be 1 if team ranked i th first season remains i th second seasons. Then $E[N]=E\left[\sum_{i=1}^{8} N_{i}\right]=8 \cdot \frac{1}{8}=1$. Similarly, $E\left[N_{+}\right]=E\left[N_{-}\right]=6 \cdot \frac{1}{8}=3 / 4$
- $\operatorname{Var}[N]=E\left[N^{2}\right]-E[N]^{2}$ and $E\left[N^{2}\right]=E\left[\sum_{i=1}^{8} \sum_{j=1}^{8} N_{i} N_{j}\right]=8 \cdot \frac{1}{8}+56 \cdot \frac{1}{56}=2$.
- N_{+}^{i} be 1 if team ranked i th has rank improve to $(i-2)$ th for second seasons. Then

$$
\begin{aligned}
& E\left[\left(N_{+}\right)^{2}\right]=E\left[\sum_{j=1}^{8} \sum_{3=1}^{8} N_{+}^{i} N_{+}^{j}\right]=6 \cdot \frac{1}{8}+30 \cdot \frac{1}{56}=9 / 7, \text { so } \\
& \operatorname{Var}\left[N_{+}\right]=9 / 7-(3 / 4)^{2}
\end{aligned}
$$

Conditional distributions

- Roll ten dice. Find the conditional probability that there are exactly 4 ones, given that there are exactly 4 sixes.

Conditional distributions - answers

- Straightforward approach: $P(A \mid B)=P(A B) / P(B)$.

Conditional distributions - answers

- Straightforward approach: $P(A \mid B)=P(A B) / P(B)$.
- Numerator: is $\frac{\binom{10}{4}\binom{6}{4} 4^{2}}{6^{10}}$. Denominator is $\frac{\binom{10}{4} 5^{6}}{6^{10}}$.

Conditional distributions - answers

- Straightforward approach: $P(A \mid B)=P(A B) / P(B)$.
- Numerator: is $\frac{\binom{10}{4}\binom{6}{4} 4^{2}}{6^{10}}$. Denominator is $\frac{\binom{10}{4} 5^{6}}{6^{10}}$.
-Ratio is $\binom{6}{4} 4^{2} / 5^{6}=\binom{6}{4}\left(\frac{1}{5}\right)^{4}\left(\frac{4}{5}\right)^{2}$.

Conditional distributions - answers

- Straightforward approach: $P(A \mid B)=P(A B) / P(B)$.
- Numerator: is $\frac{\binom{10}{4}\binom{6}{4} 4^{2}}{6^{10}}$. Denominator is $\frac{\binom{10}{4} 5^{6}}{6^{10}}$.
- Ratio is $\binom{6}{4} 4^{2} / 5^{6}=\binom{6}{4}\left(\frac{1}{5}\right)^{4}\left(\frac{4}{5}\right)^{2}$.
- Alternate solution: first condition on location of the 6's and then use binomial theorem.

Poisson point processes

- Suppose that in a certain town earthquakes are a Poisson point process, with an average of one per decade, and volcano eruptions are an independent Poisson point process, with an average of two per decade. The V be length of time (in decades) until the first volcano eruption and E the length of time (in decades) until the first earthquake. Compute the following:
- $\mathbb{E}\left[E^{2}\right]$ and $\operatorname{Cov}[E, V]$.

Poisson point processes

- Suppose that in a certain town earthquakes are a Poisson point process, with an average of one per decade, and volcano eruptions are an independent Poisson point process, with an average of two per decade. The V be length of time (in decades) until the first volcano eruption and E the length of time (in decades) until the first earthquake. Compute the following:
- $\mathbb{E}\left[E^{2}\right]$ and $\operatorname{Cov}[E, V]$.
- The expected number of calendar years, in the next decade (ten calendar years), that have no earthquakes and no volcano eruptions.

Poisson point processes

- Suppose that in a certain town earthquakes are a Poisson point process, with an average of one per decade, and volcano eruptions are an independent Poisson point process, with an average of two per decade. The V be length of time (in decades) until the first volcano eruption and E the length of time (in decades) until the first earthquake. Compute the following:
- $\mathbb{E}\left[E^{2}\right]$ and $\operatorname{Cov}[E, V]$.
- The expected number of calendar years, in the next decade (ten calendar years), that have no earthquakes and no volcano eruptions.
- The probability density function of $\min \{E, V\}$.

Poisson point processes - answers

- $E\left[E^{2}\right]=2$ and $\operatorname{Cov}[E, V]=0$.

Poisson point processes - answers

- $E\left[E^{2}\right]=2$ and $\operatorname{Cov}[E, V]=0$.
- Probability of no earthquake or eruption in first year is $e^{-(2+1) \frac{1}{10}}=e^{-.3}$ (see next part). Same for any year by memoryless property. Expected number of quake/eruption-free years is $10 e^{-.3} \approx 7.4$.

Poisson point processes - answers

- $E\left[E^{2}\right]=2$ and $\operatorname{Cov}[E, V]=0$.
- Probability of no earthquake or eruption in first year is $e^{-(2+1) \frac{1}{10}}=e^{-.3}$ (see next part). Same for any year by memoryless property. Expected number of quake/eruption-free years is $10 e^{-.3} \approx 7.4$.
- Probability density function of $\min \{E, V\}$ is $3 e^{-(2+1) x}$ for $x \geq 0$, and 0 for $x<0$.

Order statistics

- Let X be a uniformly distributed random variable on $[-1,1]$.

Order statistics

- Let X be a uniformly distributed random variable on $[-1,1]$.
- Compute the variance of X^{2}.

Order statistics

- Let X be a uniformly distributed random variable on $[-1,1]$.
- Compute the variance of X^{2}.
- If X_{1}, \ldots, X_{n} are independent copies of X, what is the probability density function for the smallest of the X_{i}

Order statistics - answers

$$
\begin{gathered}
\operatorname{Var}\left[X^{2}\right]=E\left[X^{4}\right]-\left(E\left[X^{2}\right]\right)^{2} \\
=\int_{-1}^{1} \frac{1}{2} x^{4} d x-\left(\int_{-1}^{1} \frac{1}{2} x^{2} d x\right)^{2}=\frac{1}{5}-\frac{1}{9}=\frac{4}{45} .
\end{gathered}
$$

Order statistics - answers

$$
\begin{gathered}
\operatorname{Var}\left[X^{2}\right]=E\left[X^{4}\right]-\left(E\left[X^{2}\right]\right)^{2} \\
=\int_{-1}^{1} \frac{1}{2} x^{4} d x-\left(\int_{-1}^{1} \frac{1}{2} x^{2} d x\right)^{2}=\frac{1}{5}-\frac{1}{9}=\frac{4}{45}
\end{gathered}
$$

- Note that for $x \in[-1,1]$ we have

$$
P\{X>x\}=\int_{x}^{1} \frac{1}{2} d x=\frac{1-x}{2}
$$

If $x \in[-1,1]$, then

$$
\begin{gathered}
P\left\{\min \left\{X_{1}, \ldots, X_{n}\right\}>x\right\} \\
=P\left\{X_{1}>x, X_{2}>x, \ldots, X_{n}>x\right\}=\left(\frac{1-x}{2}\right)^{n} .
\end{gathered}
$$

So the density function is

$$
-\frac{\partial}{\partial x}\left(\frac{1-x}{2}\right)^{n}=\frac{n}{2}\left(\frac{1-x}{2}\right)^{n-1}
$$

Moment generating functions

- Suppose that X_{i} are independent copies of a random variable X. Let $M_{X}(t)$ be the moment generating function for X. Compute the moment generating function for the average $\sum_{i=1}^{n} X_{i} / n$ in terms of $M_{X}(t)$ and n.

Moment generating functions - answers

- Write $Y=\sum_{i=1}^{n} X_{i} / n$. Then

$$
M_{Y}(t)=E\left[e^{t Y}\right]=E\left[e^{t \sum_{i=1}^{n} X_{i} / n}\right]=\left(M_{X}(t / n)\right)^{n}
$$

Entropy

- Suppose X and Y are independent random variables, each equal to 1 with probability $1 / 3$ and equal to 2 with probability 2/3.
- Compute the entropy $H(X)$.

Entropy

- Suppose X and Y are independent random variables, each equal to 1 with probability $1 / 3$ and equal to 2 with probability 2/3.
- Compute the entropy $H(X)$.
- Compute $H(X+Y)$.

Entropy

- Suppose X and Y are independent random variables, each equal to 1 with probability $1 / 3$ and equal to 2 with probability 2/3.
- Compute the entropy $H(X)$.
- Compute $H(X+Y)$.
- Which is larger, $H(X+Y)$ or $H(X, Y)$? Would the answer to this question be the same for any discrete random variables X and Y ? Explain.

Entropy - answers

- $H(X)=\frac{1}{3}\left(-\log \frac{1}{3}\right)+\frac{2}{3}\left(-\log \frac{2}{3}\right)$.

Entropy - answers

$$
\begin{aligned}
& -H(X)=\frac{1}{3}\left(-\log \frac{1}{3}\right)+\frac{2}{3}\left(-\log \frac{2}{3}\right) \\
& -H(X+Y)=\frac{1}{9}\left(-\log \frac{1}{9}\right)+\frac{4}{9}\left(-\log \frac{4}{9}\right)+\frac{4}{9}\left(-\log \frac{4}{9}\right)
\end{aligned}
$$

Entropy - answers

- $H(X)=\frac{1}{3}\left(-\log \frac{1}{3}\right)+\frac{2}{3}\left(-\log \frac{2}{3}\right)$.
- $H(X+Y)=\frac{1}{9}\left(-\log \frac{1}{9}\right)+\frac{4}{9}\left(-\log \frac{4}{9}\right)+\frac{4}{9}\left(-\log \frac{4}{9}\right)$
- $H(X, Y)$ is larger, and we have $H(X, Y) \geq H(X+Y)$ for any X and Y. To see why, write $a(x, y)=P\{X=x, Y=y\}$ and $b(x, y)=P\{X+Y=x+y\}$. Then $a(x, y) \leq b(x, y)$ for any x and y, so $H(X, Y)=E[-\log a(x, y)] \geq E[-\log b(x, y)]=H(X+Y)$.

Markov chains

- Alice and Bob share a home with a bathroom, a walk-in closet, and 2 towels.

Markov chains

- Alice and Bob share a home with a bathroom, a walk-in closet, and 2 towels.
- Each morning a fair coin decide which of the two showers first.

Markov chains

- Alice and Bob share a home with a bathroom, a walk-in closet, and 2 towels.
- Each morning a fair coin decide which of the two showers first.
- After Bob showers, if there is at least one towel in the bathroom, Bob uses the towel and leaves it draped over a chair in the walk-in closet. If there is no towel in the bathroom, Bob grumpily goes to the walk-in closet, dries off there, and leaves the towel in the walk-in closet

Markov chains

- Alice and Bob share a home with a bathroom, a walk-in closet, and 2 towels.
- Each morning a fair coin decide which of the two showers first.
- After Bob showers, if there is at least one towel in the bathroom, Bob uses the towel and leaves it draped over a chair in the walk-in closet. If there is no towel in the bathroom, Bob grumpily goes to the walk-in closet, dries off there, and leaves the towel in the walk-in closet
- When Alice showers, she first checks to see if at least one towel is present. If a towel is present, she dries off with that towel and returns it to the bathroom towel rack. Otherwise, she cheerfully retrieves both towels from the walk-in closet, then showers, dries off and leaves both towels on the rack.

Markov chains

- Alice and Bob share a home with a bathroom, a walk-in closet, and 2 towels.
- Each morning a fair coin decide which of the two showers first.
- After Bob showers, if there is at least one towel in the bathroom, Bob uses the towel and leaves it draped over a chair in the walk-in closet. If there is no towel in the bathroom, Bob grumpily goes to the walk-in closet, dries off there, and leaves the towel in the walk-in closet
- When Alice showers, she first checks to see if at least one towel is present. If a towel is present, she dries off with that towel and returns it to the bathroom towel rack. Otherwise, she cheerfully retrieves both towels from the walk-in closet, then showers, dries off and leaves both towels on the rack.
- Problem: describe towel-distribution evolution as a Markov chain and determine (over the long term) on what fraction of days Bob emerges from the shower to find no towel.

Markov chains - answers

- Let state $0,1,2$ denote bathroom towel number.

Markov chains - answers

- Let state $0,1,2$ denote bathroom towel number.
- Shower state change Bob: $2 \rightarrow 1,1 \rightarrow 0,0 \rightarrow 0$.

Markov chains - answers

- Let state $0,1,2$ denote bathroom towel number.
- Shower state change Bob: $2 \rightarrow 1,1 \rightarrow 0,0 \rightarrow 0$.
- Shower state change Alice: $2 \rightarrow 2,1 \rightarrow 1,0 \rightarrow 2$.

Markov chains - answers

- Let state $0,1,2$ denote bathroom towel number.
- Shower state change Bob: $2 \rightarrow 1,1 \rightarrow 0,0 \rightarrow 0$.
- Shower state change Alice: $2 \rightarrow 2,1 \rightarrow 1,0 \rightarrow 2$.
- Morning state change $\mathrm{AB}: 2 \rightarrow 1,1 \rightarrow 0,0 \rightarrow 1$.

Markov chains - answers

- Let state $0,1,2$ denote bathroom towel number.
- Shower state change Bob: $2 \rightarrow 1,1 \rightarrow 0,0 \rightarrow 0$.
- Shower state change Alice: $2 \rightarrow 2,1 \rightarrow 1,0 \rightarrow 2$.
- Morning state change AB: $2 \rightarrow 1,1 \rightarrow 0,0 \rightarrow 1$.
- Morning state change $\mathrm{BA}: 2 \rightarrow 1,1 \rightarrow 2,0 \rightarrow 2$.

Markov chains - answers

- Let state $0,1,2$ denote bathroom towel number.
- Shower state change Bob: $2 \rightarrow 1,1 \rightarrow 0,0 \rightarrow 0$.
- Shower state change Alice: $2 \rightarrow 2,1 \rightarrow 1,0 \rightarrow 2$.
- Morning state change AB: $2 \rightarrow 1,1 \rightarrow 0,0 \rightarrow 1$.
- Morning state change BA: $2 \rightarrow 1,1 \rightarrow 2,0 \rightarrow 2$.
- Markov chain matrix:

$$
M=\left(\begin{array}{lll}
0 & .5 & .5 \\
.5 & 0 & .5 \\
0 & 1 & 0
\end{array}\right)
$$

Markov chains - answers

- Let state $0,1,2$ denote bathroom towel number.
- Shower state change Bob: $2 \rightarrow 1,1 \rightarrow 0,0 \rightarrow 0$.
- Shower state change Alice: $2 \rightarrow 2,1 \rightarrow 1,0 \rightarrow 2$.
- Morning state change AB: $2 \rightarrow 1,1 \rightarrow 0,0 \rightarrow 1$.
- Morning state change BA: $2 \rightarrow 1,1 \rightarrow 2,0 \rightarrow 2$.
- Markov chain matrix:

$$
M=\left(\begin{array}{lll}
0 & .5 & .5 \\
.5 & 0 & .5 \\
0 & 1 & 0
\end{array}\right)
$$

- Row vector π such that $\pi M=\pi$ (with components of π summing to one) is ($\left(\begin{array}{lll}\frac{2}{9} & \frac{4}{9} & \frac{1}{3}\end{array}\right)$.

Markov chains - answers

- Let state $0,1,2$ denote bathroom towel number.
- Shower state change Bob: $2 \rightarrow 1,1 \rightarrow 0,0 \rightarrow 0$.
- Shower state change Alice: $2 \rightarrow 2,1 \rightarrow 1,0 \rightarrow 2$.
- Morning state change AB: $2 \rightarrow 1,1 \rightarrow 0,0 \rightarrow 1$.
- Morning state change BA: $2 \rightarrow 1,1 \rightarrow 2,0 \rightarrow 2$.
- Markov chain matrix:

$$
M=\left(\begin{array}{lll}
0 & .5 & .5 \\
.5 & 0 & .5 \\
0 & 1 & 0
\end{array}\right)
$$

- Row vector π such that $\pi M=\pi$ (with components of π summing to one) is ($\left.\begin{array}{lll}\frac{2}{9} & \frac{4}{9} & \frac{1}{3}\end{array}\right)$.
- Bob finds no towel only if morning starts in state zero and Bob goes first. Over long term Bob finds no towel $\frac{2}{9} \times \frac{1}{2}=\frac{1}{9}$ fraction of the time.

Optional stopping, martingales, central limit theorem

Suppose that $X_{1}, X_{2}, X_{3}, \ldots$ is an infinite sequence of independent random variables which are each equal to 1 with probability $1 / 2$ and -1 with probability $1 / 2$. Let $Y_{n}=\sum_{i=1}^{n} X_{i}$. Answer the following:

- What is the the probability that Y_{n} reaches -25 before the first time that it reaches 5 ?

Optional stopping, martingales, central limit theorem

Suppose that $X_{1}, X_{2}, X_{3}, \ldots$ is an infinite sequence of independent random variables which are each equal to 1 with probability $1 / 2$ and -1 with probability $1 / 2$. Let $Y_{n}=\sum_{i=1}^{n} X_{i}$. Answer the following:

- What is the the probability that Y_{n} reaches -25 before the first time that it reaches 5 ?
- Use the central limit theorem to approximate the probability that $Y_{9000000}$ is greater than 6000 .

Optional stopping, martingales, central limit theorem -

 answers- $p_{-25} 25+p_{5} 5=0$ and $p_{-25}+p_{5}=1$. Solving, we obtain $p_{-25}=1 / 6$ and $p_{5}=5 / 6$.

Optional stopping, martingales, central limit theorem answers

- $p_{-25} 25+p_{5} 5=0$ and $p_{-25}+p_{5}=1$. Solving, we obtain $p_{-25}=1 / 6$ and $p_{5}=5 / 6$.
- One standard deviation is $\sqrt{9000000}=3000$. We want probability to be 2 standard deviations above mean. Should be about $\int_{2}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x$.

Martingales

- Let X_{i} be independent random variables with mean zero. In which of the cases below is the sequence Y_{i} necessarily a martingale?

Martingales

- Let X_{i} be independent random variables with mean zero. In which of the cases below is the sequence Y_{i} necessarily a martingale?
- $Y_{n}=\sum_{i=1}^{n} i X_{i}$

Martingales

- Let X_{i} be independent random variables with mean zero. In which of the cases below is the sequence Y_{i} necessarily a martingale?
- $Y_{n}=\sum_{i=1}^{n} i X_{i}$
- $Y_{n}=\sum_{i=1}^{n} X_{i}^{2}-n$

Martingales

- Let X_{i} be independent random variables with mean zero. In which of the cases below is the sequence Y_{i} necessarily a martingale?
$\begin{aligned}-Y_{n} & =\sum_{i=1}^{n} i X_{i} \\ -Y_{n} & =\sum_{i=1}^{n} X_{i}^{2}-n \\ -Y_{n} & =\prod_{i=1}^{n}\left(1+X_{i}\right)\end{aligned}$

Martingales

- Let X_{i} be independent random variables with mean zero. In which of the cases below is the sequence Y_{i} necessarily a martingale?
$\begin{aligned} &-Y_{n}=\sum_{i=1}^{n} i X_{i} \\ &-Y_{n}=\sum_{i=1}^{n} X_{i}^{2}-n \\ &-Y_{n}=\prod_{i=1}^{n}\left(1+X_{i}\right) \\ &-Y_{n}=\prod_{i=1}^{n}\left(X_{i}-1\right)\end{aligned}$

Martingales

- Yes, no, yes, no.

If you want more probability and statistics...

- UNDERGRADUATE:
(a) 18.615 Introduction to Stochastic Processes
(b) 18.642 Topics in Math with Applications in Finance
(c) 18.650 Statistics for Applications

If you want more probability and statistics...

- UNDERGRADUATE:
(a) 18.615 Introduction to Stochastic Processes
(b) 18.642 Topics in Math with Applications in Finance
(c) 18.650 Statistics for Applications
- GRADUATE LEVEL PROBABILITY
(a) 18.675 Theory of Probability
(b) 18.676 Stochastic calculus
(c) 18.677 Topics in stochastic processes (topics vary, can be pretty much anything in probability, repeatable)

If you want more probability and statistics...

- UNDERGRADUATE:
(a) 18.615 Introduction to Stochastic Processes
(b) 18.642 Topics in Math with Applications in Finance
(c) 18.650 Statistics for Applications
- GRADUATE LEVEL PROBABILITY
(a) 18.675 Theory of Probability
(b) 18.676 Stochastic calculus
(c) 18.677 Topics in stochastic processes (topics vary, can be pretty much anything in probability, repeatable)
- GRADUATE LEVEL STATISTICS
(a) 18.655 Mathematical statistics
(b) 18.657 Topics in statistics (topics vary, repeatable)

If you want more probability and statistics...

- UNDERGRADUATE:
(a) 18.615 Introduction to Stochastic Processes
(b) 18.642 Topics in Math with Applications in Finance
(c) 18.650 Statistics for Applications
- GRADUATE LEVEL PROBABILITY
(a) 18.675 Theory of Probability
(b) 18.676 Stochastic calculus
(c) 18.677 Topics in stochastic processes (topics vary, can be pretty much anything in probability, repeatable)
- GRADUATE LEVEL STATISTICS
(a) 18.655 Mathematical statistics
(b) 18.657 Topics in statistics (topics vary, repeatable)
- OUTSIDE OF MATH DEPARTMENT
(a) Look up new MIT minor in statistics and data sciences.
(b) Look up longer lists of probability/statistics courses at https: //stat.mit.edu/academics/minor-in-statistics/ or http://student.mit.edu/catalog/m18b.html
(c) Ask other MIT faculty how they use probability and statistics in their research.

Thanks for taking the course!

- Considering previous generations of mathematically inclined MIT students, and adopting a frequentist point of view...

Thanks for taking the course!

- Considering previous generations of mathematically inclined MIT students, and adopting a frequentist point of view...
- You will probably do some important things with your lives.

Thanks for taking the course!

- Considering previous generations of mathematically inclined MIT students, and adopting a frequentist point of view...
- You will probably do some important things with your lives.
- I hope your probabilistic shrewdness serves you well.

Thanks for taking the course!

- Considering previous generations of mathematically inclined MIT students, and adopting a frequentist point of view...
- You will probably do some important things with your lives.
- I hope your probabilistic shrewdness serves you well.
- Thinking more short term...

Thanks for taking the course!

- Considering previous generations of mathematically inclined MIT students, and adopting a frequentist point of view...
- You will probably do some important things with your lives.
- I hope your probabilistic shrewdness serves you well.
- Thinking more short term...
- Happy exam day!

Thanks for taking the course!

- Considering previous generations of mathematically inclined MIT students, and adopting a frequentist point of view...
- You will probably do some important things with your lives.
- I hope your probabilistic shrewdness serves you well.
- Thinking more short term...
- Happy exam day!
- And may the odds be ever in your favor.

