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Expectation and variance

I Eight athletic teams are ranked 1 through 8 after season one,
and ranked 1 through 8 again after season two. Assume that
each set of rankings is chosen uniformly from the set of 8!
possible rankings and that the two rankings are independent.
Let N be the number of teams whose rank does not change
from season one to season two. Let N+ the number of teams
whose rank improves by exactly two spots. Let N− be the
number whose rank declines by exactly two spots. Compute
the following:

I E [N], E [N+], and E [N−]
I Var[N]
I Var[N+]
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Expectation and variance — answers

I Let Ni be 1 if team ranked ith first season remains ith second
seasons. Then E [N] = E [

∑8
i=1Ni ] = 8 · 18 = 1. Similarly,

E [N+] = E [N−] = 6 · 18 = 3/4

I Var[N] = E [N2]− E [N]2 and
E [N2] = E [

∑8
i=1

∑8
j=1NiNj ] = 8 · 18 + 56 · 1

56 = 2.

I N i
+ be 1 if team ranked ith has rank improve to (i − 2)th for

second seasons. Then
E [(N+)2] = E [

∑8
j=1

∑8
3=1N

i
+N

j
+] = 6 · 18 + 30 · 1

56 = 9/7, so

Var[N+] = 9/7− (3/4)2.
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Conditional distributions

I Roll ten dice. Find the conditional probability that there are
exactly 4 ones, given that there are exactly 4 sixes.



Conditional distributions — answers

I Straightforward approach: P(A|B) = P(AB)/P(B).

I Numerator: is
(104 )(64)4

2

610
. Denominator is

(104 )56

610
.

I Ratio is
(6
4

)
42/56 =

(6
4

)
(15)4(45)2.

I Alternate solution: first condition on location of the 6’s and
then use binomial theorem.
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Poisson point processes

I Suppose that in a certain town earthquakes are a Poisson
point process, with an average of one per decade, and volcano
eruptions are an independent Poisson point process, with an
average of two per decade. The V be length of time (in
decades) until the first volcano eruption and E the length of
time (in decades) until the first earthquake. Compute the
following:
I E[E 2] and Cov[E ,V ].

I The expected number of calendar years, in the next decade
(ten calendar years), that have no earthquakes and no volcano
eruptions.

I The probability density function of min{E ,V }.
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Poisson point processes — answers

I E [E 2] = 2 and Cov[E ,V ] = 0.

I Probability of no earthquake or eruption in first year is

e−(2+1) 1
10 = e−.3 (see next part). Same for any year by

memoryless property. Expected number of
quake/eruption-free years is 10e−.3 ≈ 7.4.

I Probability density function of min{E ,V } is 3e−(2+1)x for
x ≥ 0, and 0 for x < 0.
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Order statistics

I Let X be a uniformly distributed random variable on [−1, 1].

I Compute the variance of X 2.
I If X1, . . . ,Xn are independent copies of X , what is the

probability density function for the smallest of the Xi
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Order statistics — answers

I
Var[X 2] = E [X 4]− (E [X 2])2

=

∫ 1

−1

1

2
x4dx − (

∫ 1

−1

1

2
x2dx)2 =

1

5
− 1

9
=

4

45
.

I Note that for x ∈ [−1, 1] we have

P{X > x} =

∫ 1

x

1

2
dx =

1− x

2
.

If x ∈ [−1, 1], then

P{min{X1, . . . ,Xn} > x}

= P{X1 > x ,X2 > x , . . . ,Xn > x} = (
1− x

2
)n.

So the density function is

− ∂

∂x
(

1− x

2
)n =

n

2
(

1− x

2
)n−1.
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Moment generating functions

I Suppose that Xi are independent copies of a random variable
X . Let MX (t) be the moment generating function for X .
Compute the moment generating function for the average∑n

i=1 Xi/n in terms of MX (t) and n.



Moment generating functions — answers

I Write Y =
∑n

i=1 Xi/n. Then

MY (t) = E [etY ] = E [et
∑n

i=1 Xi/n] = (MX (t/n))n.



Entropy

I Suppose X and Y are independent random variables, each
equal to 1 with probability 1/3 and equal to 2 with probability
2/3.
I Compute the entropy H(X ).

I Compute H(X + Y ).
I Which is larger, H(X + Y ) or H(X ,Y )? Would the answer to

this question be the same for any discrete random variables X
and Y ? Explain.
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Entropy — answers

I H(X ) = 1
3(− log 1

3) + 2
3(− log 2

3).

I H(X + Y ) = 1
9(− log 1

9) + 4
9(− log 4

9) + 4
9(− log 4

9)

I H(X ,Y ) is larger, and we have H(X ,Y ) ≥ H(X + Y ) for any
X and Y . To see why, write a(x , y) = P{X = x ,Y = y} and
b(x , y) = P{X + Y = x + y}. Then a(x , y) ≤ b(x , y) for any
x and y , so
H(X ,Y ) = E [− log a(x , y)] ≥ E [− log b(x , y)] = H(X + Y ).
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Markov chains

I Alice and Bob share a home with a bathroom, a walk-in
closet, and 2 towels.

I Each morning a fair coin decide which of the two showers first.

I After Bob showers, if there is at least one towel in the
bathroom, Bob uses the towel and leaves it draped over a
chair in the walk-in closet. If there is no towel in the
bathroom, Bob grumpily goes to the walk-in closet, dries off
there, and leaves the towel in the walk-in closet

I When Alice showers, she first checks to see if at least one
towel is present. If a towel is present, she dries off with that
towel and returns it to the bathroom towel rack. Otherwise,
she cheerfully retrieves both towels from the walk-in closet,
then showers, dries off and leaves both towels on the rack.

I Problem: describe towel-distribution evolution as a Markov
chain and determine (over the long term) on what fraction of
days Bob emerges from the shower to find no towel.
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Markov chains — answers

I Let state 0, 1, 2 denote bathroom towel number.

I Shower state change Bob: 2→ 1, 1→ 0, 0→ 0.

I Shower state change Alice: 2→ 2, 1→ 1, 0→ 2.

I Morning state change AB: 2→ 1, 1→ 0, 0→ 1.

I Morning state change BA: 2→ 1, 1→ 2, 0→ 2.

I Markov chain matrix:

M =

0 .5 .5
.5 0 .5
0 1 0


I Row vector π such that πM = π (with components of π

summing to one) is
(
2
9

4
9

1
3

)
.

I Bob finds no towel only if morning starts in state zero and
Bob goes first. Over long term Bob finds no towel 2

9 ×
1
2 = 1

9
fraction of the time.
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Optional stopping, martingales, central limit theorem

Suppose that X1,X2,X3, . . . is an infinite sequence of independent
random variables which are each equal to 1 with probability 1/2
and −1 with probability 1/2. Let Yn =

∑n
i=1 Xi . Answer the

following:

I What is the the probability that Yn reaches −25 before the
first time that it reaches 5?

I Use the central limit theorem to approximate the probability
that Y9000000 is greater than 6000.
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Optional stopping, martingales, central limit theorem —
answers

I p−2525 + p55 = 0 and p−25 + p5 = 1. Solving, we obtain
p−25 = 1/6 and p5 = 5/6.

I One standard deviation is
√

9000000 = 3000. We want
probability to be 2 standard deviations above mean. Should
be about

∫∞
2

1√
2π
e−x

2/2dx .
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Martingales

I Let Xi be independent random variables with mean zero. In
which of the cases below is the sequence Yi necessarily a
martingale?

I Yn =
∑n

i=1 iXi

I Yn =
∑n

i=1 X
2
i − n

I Yn =
∏n

i=1(1 + Xi )
I Yn =

∏n
i=1(Xi − 1)
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Martingales

I Yes, no, yes, no.



If you want more probability and statistics...

I UNDERGRADUATE:
(a) 18.615 Introduction to Stochastic Processes
(b) 18.642 Topics in Math with Applications in Finance
(c) 18.650 Statistics for Applications

I GRADUATE LEVEL PROBABILITY
(a) 18.675 Theory of Probability
(b) 18.676 Stochastic calculus
(c) 18.677 Topics in stochastic processes (topics vary, can be

pretty much anything in probability, repeatable)
I GRADUATE LEVEL STATISTICS

(a) 18.655 Mathematical statistics
(b) 18.657 Topics in statistics (topics vary, repeatable)

I OUTSIDE OF MATH DEPARTMENT
(a) Look up new MIT minor in statistics and data sciences.
(b) Look up longer lists of probability/statistics courses at https:

//stat.mit.edu/academics/minor-in-statistics/ or
http://student.mit.edu/catalog/m18b.html

(c) Ask other MIT faculty how they use probability and statistics
in their research.

https://stat.mit.edu/academics/minor-in-statistics/
https://stat.mit.edu/academics/minor-in-statistics/
http://student.mit.edu/catalog/m18b.html
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Thanks for taking the course!

I Considering previous generations of mathematically inclined
MIT students, and adopting a frequentist point of view...

I You will probably do some important things with your lives.

I I hope your probabilistic shrewdness serves you well.

I Thinking more short term...

I Happy exam day!

I And may the odds be ever in your favor.
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