1. Carefully and clearly show your work on each problem (without writing anything that is technically not true). In particular, if you use any known facts (or facts proved in lecture) you should state clearly what fact you are using and why it applies.
2. No calculators, books, notes or other resources may be used except for the story sheet at http://math.mit.edu/~sheffield/2018600/storysheet.pdf
3. Simplify your answers as much as possible (but answers may include factorials and $\binom{n}{k}$ expressions - no need to multiply them out).

NAME: \qquad

1. (20 points) Toss 3 independent fair coins. Let X be the number of heads.
(a) Compute the expectation $E[X]$ and variance $\operatorname{Var}[X]$.
(b) Compute the expectation $E\left[(X-1)^{3}\right]$.
(c) For $i \in\{1,2,3\}$ let E_{i} be the event that the i th coin is heads. Use inclusion-exclusion to compute $P\left(E_{1} \cup E_{2} \cup E_{3}\right)$ and show your work. (This problem is testing inclusion-exclusion, so you have to use inclusion-exclusion to get full credit.)
2. (15 points) A small college dorm has 6 (distinguishable) double occupancy rooms and 12 students. The students are assigned to the six rooms randomly (two students per room) with all such assignments being equally likely. Six of these students - Alice, Beatrice, Carol, Deborah, Eve and Francis - are especially close friends who are really hoping to be roomed together.
(a) Compute the probability that Alice and Beatrice end up in the same room.
(b) Compute the conditional probability that Alice and Beatrice end up in the same room given that Carol and Deborah end up in the same room.
(c) Compute the probability that Alice, Beatrice, Carol, Deborah, Eve and Francis end up in six different rooms.
3. (20 points) Suppose that during a global pandemic a virus infects 10^{9} people and within each person it makes 10^{11} copies of itself. (The individual copies are called virions.) Overall 10^{20} new virions are produced. Each time a new virion is produced, there is a 10^{-20} probability that a Terrible Mutation occurs (independently). Let X be the number of Terrible Mutations that occur.
(a) Compute the expectation $E(X)$.
(b) Use a Poisson random variable to approximate the probability $P(X=2)$.
(c) Use a Poisson random variable to approximate the conditional probability $P(X \geq 2 \mid X \geq 1)$. In other words, compute the conditional probability that there are multiple terrible mutations given that there is at least one.
(d) Suppose that instead of infecting 10^{9} people, the virus infects $c \cdot 10^{9}$ people for some moderate-sized $c>0$. Let p_{c} be the probability that at least one terrible mutation occurs in this scenario. Use a Poisson random variable to approximate p_{c} (as a function of c).
4.(10 points) Let E_{1}, E_{2}, \ldots be an infinite sequence of independent events such that each E_{n} occurs with probability $1 / n$! and let X be the number of these events that occur.
(a) Compute the expectation $E[X]$.
(b) Compute the conditional probability $P\left(E_{1} E_{2} E_{3} \mid E_{3} E_{4} E_{5}\right)$.
4. (15 points) Alice has a pile of 30 green jelly beans, 30 blue jelly beans, and 30 red jelly beans. She wants to make jelly bean gift bags as party favors for her friends. So she picks 9 jelly beans (uniformly at random) to put into the first bag; then she picks another 9 jelly beans (uniformly at random from the 81 remaining in the pile) to put in the second bag, and so on, until she has made 10 gift bags (each containing 9 jelly beans).
(a) Compute the probability the first gift bag is perfectly balanced, in the sense that it has exactly three jelly beans of each color.
(b) Compute the expected number of perfectly balanced gift bags.
(c) Compute the probability that all ten bags are perfectly balanced.
5. (10 points) How many ways are there to divide 15 (indistinguishable) pieces of sushi among 4 (distinguishable) people? In other words, now many sequences of non-negative integers $a_{1}, a_{2}, a_{3}, a_{4}$ satisfy $a_{1}+a_{2}+a_{3}+a_{4}=15 ?$
6. (10 points) Each time Bob casts his fishing line into the water, he has a $p=.01$ chance of catching a fish, independently of all else. Let X be the number of times Bob has to cast his fishing line in order to catch 3 fish.
(a) Compute the expectation $E(X)$ and variance $\operatorname{Var}(X)$.
(b) Compute the probability $P(X>200)$.
