18.600 Midterm 2, Fall 2019 Solutions

1. (20 points)
(a) Melissa is applying to 20 different out-of-state medical schools. Because of her excellent GPA/MCAT/essays, her chance of being accepted to each school is $1 / 20$, and the decisions at the 20 schools are independent of each other. Using a Poisson approximation, estimate the probability that Melissa will be accepted to at least two of these schools. ANSWER: Number X of acceptances is roughly Poisson with parameter $\lambda=20 \cdot \frac{1}{20}=1$. Thus $P(X \geq 2)=1-P(X=1)-P(X=0) \approx 1-e^{-\lambda} \lambda^{1} / 1!-e^{-\lambda} \lambda^{0} / 0!=1-2 / e \approx .26424$.
Remark: If we compute the exact value using a binomial distribution, we get $P(X \geq 2) \approx .26416$, so the approximation is quite good.
(b) Jill is applying to 25 different out-of-state medical schools and has a $1 / 5$ chance (independently) of being invited for an interview at each school. Let X be the number of medical schools at which she is invited to interview. Compute $E[X]$ and $\operatorname{Var}[X]$.
ANSWER: The number of interviews is binomial with parameter $n=25$ and $p=1 / 5$. So $E[X]=n p=5$ and $\operatorname{Var}[X]=n p(1-p)=4$.
(c) Using a normal approximation, roughly approximate the probability that Jill is invited to interview at fewer than 2.5 schools. You may use the function

$$
\Phi(a)=\int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x
$$

in your answer. ANSWER: Since the standard deviation of X is 2 , the value 2.5 is $5 / 4$ standard deviations below the mean. Hence the probability is approximately $\Phi(-5 / 4) \approx .10565$. Remark: The true probability is .098 which is pretty close.
2. (20 points) A room has four lightbulbs, each of which will burn out at a random time. Let $X_{1}, X_{2}, X_{3}, X_{4}$ be the burnout times, and assume they are independent exponential random variables with parameter $\lambda=1$. Write

1. $X=X_{1}+X_{2}+X_{3}+X_{4}$.
2. $Y=\min \left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$, i.e., Y is time when first bulb burns out.
3. $Z=\max \left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$, i.e., Z is time when last bulb burns out.

Compute the following:
(a) The probability density function f_{X}. ANSWER: This is a Gamma distribution with parameters $\lambda=1$ and $n=4$. So $f_{X}(x)=x^{3} e^{-x} / 3!$ for $x \in[0, \infty)$.
(b) The probability density function f_{Y}. ANSWER: The minimum of four exponentials of parameter 1 is exponential with parameter 4 . Hence $f_{Y}(x)=4 e^{-4 x}$ for $x \in[0, \infty)$.
(c) The expectation $E[Z]$. ANSWER: This is basically the radioactive decay problem from lecture. Answer is $1 / 4+1 / 3+1 / 2+1$.
(d) The covariance $\operatorname{Cov}(Y, Z)$. (Hint: use memoryless property.) ANSWER: The memoryless property implies that Y and $Z-Y$ are independent and hence $\operatorname{Cov}(Y, Z)=\operatorname{Cov}(Y, Y+(Z-Y))=\operatorname{Cov}(Y, Y)=\operatorname{Var}(Y)$. Since Y is exponential with parameter $\lambda=4$ its variance is $1 / \lambda^{2}=1 / 16$.
3. (20 points) Five applicants are applying for a job, and an interviewer gives each applicant a score between 0 and 1. Call these scores $X_{1}, X_{2}, \ldots, X_{5}$ and assume that they are i.i.d. uniform random variables on $[0,1]$. The top applicant has score $Y=\max \left\{X_{1}, X_{2}, \ldots, X_{5}\right\}$, and the second to the top has score Z, which we define to be the second largest of the X_{i}. Compute the following:
(a) The cumulative distribution function $F_{Y}(r)$ for $r \in[0,1]$. ANSWER: $\left.P(Y \leq r)=P\left(\max \left\{X_{1}, X_{2}, \ldots, X_{5}\right\}\right) \leq r\right)=P\left(X_{1} \leq r, X_{2} \leq r, \ldots\right)=P\left(X_{1} \leq r\right)^{5}=r^{5}$.
(b) The density function f_{Y}. ANSWER: $f_{Y}(r)=F_{Y}^{\prime}(r)=5 r^{4}$ for $r \in[0,1]$ (and zero if $r \notin[0,1])$.
(c) The density function f_{Z} and the value $E[Z]$. NOTE: If you remember what this means, you may use the fact that a $\operatorname{Beta}(a, b)$ random variable has expectation $a /(a+b)$ and density $x^{a-1}(1-x)^{b-1} / B(a, b)$, where $B(a, b)=(a-1)!(b-1)!/(a+b-1)$!. ANSWER: The ordering of candidates is independent of the set of scores obtained by the candidates. This means that the density of Z is the same that of a uniform random variable conditioned on three people being smaller, one being larger. This is a Beta (a, b) random variable with $a-1=3$ and $b-1=1$. So it comes to $x^{3}(1-x) / B(4,2)=20 x^{3}(1-x)$ and $E[X]=4 /(4+2)=2 / 3$.
(d) The probability $P\left(X_{2}>2 X_{1}\right)$ (i.e., probability second candidate's score is more than than double first candidate's score). ANSWER: Note that joint density $f_{X_{1}, X_{2}}(x, y)$ is 1 on the unit square $[0,1]^{2}$ and zero elsewhere. Therefore the probability is the area of the subset of $[0,1]^{2}$ where $y>2 x$, which comes to $1 / 4$. So the answer is $1 / 4$.
4. (15 points) Let X and Y be independent random variables with density function given by $\frac{1}{\pi\left(1+x^{2}\right)}$.
(a) Compute $P(X<1)$. ANSWER: X is a Cauchy random variable, so the answer is $3 / 4$ by our spinning flashlight story. Recall that in that story, we draw a line from $(0,1)$ with a uniformly chosen angle and its intersection with \mathbb{R} is a Cauchy random variable. The angle range corresponding to $(-\infty, 1)$ is $3 / 4$ of the total range, so the answer is $3 / 4$.
(b) Compute the probability density function for the random variable $Z=(X-Y) / 2$.

ANSWER: If Y is Cauchy then $-Y$ is also Cauchy. The average of two independent Cauchy random variables it itself Cauchy, so the answer is $\frac{1}{\pi\left(1+x^{2}\right)}$.
(c) Compute $E\left[e^{-X^{2}-Y^{2}}\right]$. You can leave your answer as a double integral-no need to evaluate it explicitly. ANSWER: $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{\pi\left(1+x^{2}\right)} \frac{1}{\pi\left(1+y^{2}\right)} e^{-x^{2}-y^{2}} d x d y$
5. (10 points) Let $X_{1}, X_{2}, X_{3}, \ldots, X_{10}$ be the outcomes of independent standard die rolls-so each takes one of the values in $\{1,2,3,4,5,6\}$, each with equal probability. Write $S=X_{1}+X_{2}+\ldots+X_{10}$. Compute the following:
(a) The moment generating function $M_{X_{1}}(t)$. ANSWER:
$M_{X_{1}}(t)=E\left[e^{t X_{1}}\right]=\frac{1}{6}\left(e^{t}+e^{2 t}+e^{3 t}+e^{4 t}+e^{5 t}+e^{6 t}\right)$.
(b) The moment generating function $M_{S}(t)$.ANSWER: The moment generating function of a sum of independent random variables is the product of the moment generating functions of the individual random variables. Hence $M_{S}(t)=\left(\frac{1}{6}\left(e^{t}+e^{2 t}+e^{3 t}+e^{4 t}+e^{5 t}+e^{6 t}\right)\right)^{10}$.
6. (15 points) Let X and Y be be random variables with joint density function $f_{X, Y}(x, y)=\frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2}$. Write $Z=X+Y$.
(a) Compute $E[X Y]$. ANSWER: X and Y are independent normal random variables, each with mean zero and variance one. Since they are independent we have $E[X Y]=E[X] E[Y]=0$. Alternatively, write $E[X Y]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y \frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2} d x d y$. Then there are various ways to argue by symmetry that this must be zero.
(b) Compute the conditional expectation $E[Y \mid Z]$. That is, express the random variable $E[Y \mid Z]$ in terms of Z. ANSWER: We have $Z=E[Z \mid Z]=E[X \mid Z]+E[Y \mid Z]$. Since $E[X \mid Z]$ and $E[Y \mid Z]$ are the same by symmetry, the answer must be $Z / 2$.
(c) Compute the probability $P\left(X^{2}+Y^{2} \leq 4\right)$. ANSWER: This can be computed using polar coordinates. The integral becomes $\int_{0}^{2} \int_{0}^{2 \pi} \frac{1}{2 \pi} e^{-r^{2} / 2} r d \theta d r=\int_{0}^{2} e^{-r^{2} / 2} r d r=-\left.e^{-r^{2} / 2}\right|_{0} ^{2}=-e^{-2}-(-1)=1-e^{-2} \approx .86466$

