
Correlation, regression, and the Kelly strategy

18.600 Problem Set 8, due April 26

Welcome to your eighth 18.600 problem set! Let’s think about correlations. Given a popula-
tion of people who each have two attributes, like ACT and SAT scores, you can choose a member
at random and interpret the attributes of the person you choose as random variables. These
variables have a correlation coefficient, which you’d expect to be high for ACT and SAT scores
(maybe about .87, per some site I googled).

How high is a .87 correlation really? Imagine X, Y1 and Y2 are independent standard normals.
Imagine that X is your “raw test-taking acumen” and X + aY1 is your score on one test and
X + aY2 is your score on another test, where the aYi are random noise terms. Then ρ(X +
aY1, X + aY2) = 1/(1 + a2), which is about .86 if a = .4. In this case, the standard deviation
of the “noise factor” is .4 times the standard deviation of the “raw ability factor,” which may
seem like quite a bit of noise (despite the fact that .86 seems pretty close to 1). Play the game
http://guessthecorrelation.com/ to get some intuition for what different correlation levels
look like.

Correlations inform beliefs. The strong observed correlations between cigarettes and early
death (and many specific ailments like lung cancer) are a huge part of the of evidence that
cigarettes are unhealthy. The discovery of the unhealthiness of smoking has saved millions of
lives — a win for observational statistics. (Also an embarrassment, given that it took until the
second half of 20th century for the case to be made persuasively.)

On the other hand, we all know the correlation does not imply causation cliché. The “spurious
correlation” website tylervigen.com illustrates this with strong correlations between seemingly
unrelated annual statistics like sociology doctorates and space launches, or pool drownings and
Nicolas Cage films. The 2012 NEJM article Chocolate consumption, Cognitive function, and Nobel
Laureates (which presents a real country-to-country correlation between chocolate consumption
and Nobel prize winning) is a clever parody of the way observed correlations are used in medicine
(it’s only three pages; look it up). It earnestly walks the reader through causal hypotheses (brain-
boosting flavanoids), reverse causal hypotheses (chocolate consumed at Nobel prize celebrations)
and common demoninator hypotheses (geography, climate, socioeconomics), mostly dismissing
the latter.

Alongside correlation does not imply causation one might add correlation does not imply
correlation, or more precisely, reported correlation in some data set does not imply correlation
in the larger population, or correlation that will persist in time. Google study “is linked to” and
scroll through a few pages of hits. Some sound fairly plausible (“walking/cycling to work linked
to lower body fat”) but others raise eyebrows. Clicking through, you find that sometimes the
correlations are weak, the sample sizes small, the stories (at least at first glance) far fetched. A
news organization’s criteria for deciding which links to publicize may differ from those a careful
scientist would use to decide what to take seriously and/or study further (e.g. with randomized
trials). Reader beware.

This problem set will also feature discussion about the Kelly strategy, moment generating
functions, regression lines, and a phenomenon called regression to the mean.

Please stop by my weekly office hours (2-249, Wednesday 3 to 5) for discussion.
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A. FROM TEXTBOOK CHAPTER SEVEN:

1. Problem 50: The joint density of X and Y is given by

f(x, y) = e−x/ye−y

y , 0 < x <∞, 0 < y <∞. Compute E[X2|Y = y].

Remark: To prepare for the next problem, suppose that you discover a market inefficiency in
the form of a mispriced asset. Precisely, you discover an asset priced at $10 that has a p > 1/2
chance to go up to $11 over the next day or so (before reaching $9) and a (1− p) < 1/2 chance
to go down to $9 (before reaching $11). By buying r shares at $10 and them selling when the
price reaches $9 or $11, you have an opportunity to make a bet that will win r dollars with
probability p > 1/2 and lose r dollars with probability (1− p). Let’s ignore transaction costs
and bid-ask spread. (And assume that, unlike all those people who merely think they can
recognize market inefficiencies, you actually can. Assume also that your wisdom was obtained
legally — so no risk of an insider trading conviction!) So now you effectively have an
opportunity to bet r dollars on a p coin with p > 1/2. The question is this: how much should
you bet? In expectation you will make pr + (1− p)(−r) = (2p− 1)r dollars off this bet, so to
maximize your expected payoff, you should bet as much as you possibly can. But is that really
wise? If you repeatedly bet all our money on p-coins, it might not be long before you lose
everything. The Kelly strategy (which comes from assuming utility is a logarithmic function of
wealth — look it up) states that instead of betting everything, you should bet a 2p− 1 fraction
of your current fortune. The next problem is a simple question about this strategy.

2. Problem 67: Consider a gambler who, at each gamble, either wins or loses her bet with
respective probabilities p and 1− p. A popular gambling system knkown as the Kelly
strategy is to always bet the fraction 2p− 1 of your current fortune when p > 1/2.
Compute the expected fortune after n gambles of a gambler who starts with x units and
employs the Kelly strategy.

Remark: The next problem will help solidify your understanding of moment generating
functions. These play a central role in large deviation theory, which in turn plays a central role
in information theory, data compression, and statistical physics. In this course, we mostly use
moment generating functions (and the closely related characteristic functions) as tools for
proving the central limit theorem and the weak law of large numbers.

3. Theoretical Exercise 48: If Y = aX + b, where a and b are constants, express the moment
generating function of Y in terms of the moment generating function of X.

B. Suppose that X and Y both have mean zero and variance one, so that E[X2] = E[Y 2] = 1
and E[X] = E[Y ] = 0.

(a) Check that the correlation coefficient between X and Y is ρ = E[XY ].

(b) Let r be the value of the real number a for which E[(Y − aX)2] is minimal. Show that r
depends only on ρ and determine r as a function of ρ.

(c) Check that whenever Z has finite variance and finite expectation, the real number b that
minimizes the quantity E[(Z − b)2] is b = E[Z].
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(d) Conclude that the quantity E[(Y − aX − b)2] is minimized when a = r and b = 0.

Remark: We have shown that among all affine functions of X (i.e. all sums of the form aX + b
for real a and b) the one that best “approximates” Y in (in terms of minimizing expected square
difference) is rX. This function is commonly called the least squares regression line for
approximating Y (which we call a “dependent variable”) as a function of X (the “independent
variable”). If r = .1, it may seem odd that .1X is considered an approximation for Y (when Y
is the dependent variable) while .1Y is considered an approximation for X (when X is the
dependent variable). The lines y = .1x and x = .1y are pretty different after all. But the lines
are defined in different ways, and when |r| is small, the correlation is small, so that neither line
is an especially close approximation. If r = 1 then ρ = 1 and both lines are the same (since X
and Y are equal with probability one in this case).

Remark: The above analysis can be easily generalized (by simply rescaling and translating the
(X,Y ) plane) to the case that X and Y have non-zero mean and variances other than one. The
subject known as regression analysis encompasses this generalization along with further
generalizations involving multiple dependent variables, as well as settings where a larger
collection of functions plays the role that affine functions played for us. Regressions are
ubiquitous in academic disciplines that use data. Given data in a spreadsheet, you can compute
and plot regression lines with the push of a button (find a chart online; copy or import it into a
free spreadsheet like sheets.google.com; control click letter on top of two distinct columns to
highlight them; click the chart icon; then Customize, Series, Trendline... or if that doesn’t work
google spreadsheet regression for better instructions; or type “linear fit {1, 3}{2, 4}{4, 5}{3, 5}”
into wolframalpha to see a simple example). For a more difficult setting, imagine that I give you
a set of pictures, and assign a number to each picture indicating how closely it resembles a cat.
If you had a nice way to approximate this function (from the set of digitally encoded pictures to
the set of numbers) you could program it into your computer and enable your computer to
recognize cats. Your procedure for approximating this function will likely be more complicated
than a simple regression — it may involve neural nets or other tools from machine learning.
Statistics and machine learning are hot topics, and may be part of your further coursework at
MIT. (Note: even if your cat recognizing algorithm is a sophisticated neural net refined by
hundreds of tinkering MIT alumni, you will still use the math behind the “clinical trial” stories
in this course when you try to test your algorithm’s effectivness.)

C. On Smoker Planet, each person decides at age 18, according to a fair coin toss, whether or
not to become a life long cigarette smoker. A person who does not become a smoker will never
smoke at all and will die at a random age, the expectation of which is 75 years, with a standard
deviation of 10 years. If a person becomes a smoker, that person will smoke exactly 20
cigarettes per day throughout life, and the expected age at death will be 65 years, with a
standard deviation of 10 years.

(a) On this planet, let S ∈ {0, 20} be cigarettes smoked daily, and let L be life duration.
What is the correlation ρ(S,L) := Cov(S,L)/

√
Var(S)Var(L)? Hint: start by using the

Var(L) = Var(E[L|S]) + E[Var(L|S)] identity from lecture to get Var(L). Working out
Var(S) shouldn’t be hard. Then attack the two terms of Cov(S,L) = E[SL]− E[S]E[L].
Note that E[SL] = P{S = 0}E[SL|S = 0] + P{S = 20}E[SL|S = 20].
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On Bad Celery Planet, it turns out that (through some poorly understood mechanism) celery is
unhealthy. In fact, a single piecce of celery is as unhealthy as a single cigarette on Smoker
Planet. However, nobody eats 20 pieces a day for a lifetime. Everybody has a little bit, in
varying amounts throughout life. Here is how that works. Each year between age 18 and age 58
a person tosses a fair coin to decide whether to be a celery eater that year. If the coin comes up
heads, that person will eat, on average, one piece of celery per day for the entire year (mostly
from company vegetable platters). Given that one consumes celery for K of the possible 40
years (celery consumption after age 58 has no effect, and everyone lives to be at least 58) one
expects to live until age 75−K/80, with a standard deviation of 10 years. (So, indeed, eating 1
celery stick per day for the full 40 years is about 1/20 as harmful as smoking 20 cigarettes a day
for a lifetime.)

(b) Write L for a person’s life duration. On this planet, what is the correlation
ρ[K,L] = Cov[K,L]/

√
Var(K)Var(L)? Hint: start by using the

Var(L) = Var(E[L|K]) + E[Var(L|K)] identity from lecture to get Var(L). Working out
Var(K) shouldn’t be hard. Then attack Cov(K,L) = E[KL]− E[K]E[L] as in (a).

Remark: The answer to (b) is really a lot smaller than the answer to (a). So small that it
would be very hard to demonstrate this effect to the public without a really big sample size.
You would need several hundred thousand to be confident that you would see a statistically
significant correlation. Moreover, even if you observed the effect in a large sample, people might
reason as follows: if those who eat more celery are statistically different from those who eat less
(more health conscious, more concentrated in certain regions, more prone to also eat carrots and
ranch dressing, etc.) the effects of these differences could easily swamp any effects of the celery
itself. One can try to “control” for obvious differences in some way (e.g., with multi-variable
regressions) but one cannot account for all of them. So even after you convincingly demonstrate
correlation, it may appear (to the educated public of the planet) very unlikely that the health
effects of celery are the actual cause. Unless celery is linked more directly to a specific ailment
(e.g., death by choking on celery) or shown to be unhealthy in other ways (chemical properties,
experiments on rats, etc.) the people on Bad Celery Planet may never develop a persuasive case
against celery. In the real world, people worry that lots of products have mild carcinogenic
effects: effects in the ominous “big enough to matter, small enough to be hard to demonstrate”
category. Some hope that “big data” will improve our ability to detect and understand weak
correlations. (Maybe an app could track everyone’s celery consumption, as well as enough other
things to enable smart AI to tease out cause and effect...) Otherwise, we can hope that a better
basic scientific understanding of mechanisms by which harms arise might help us avoid “likely
to be mildly harmful” substances whose harms are too small to observe directly.

Remark: Even when we observe large effects, it is hard to know what to make of them. Per
CDC https://www.cdc.gov/nchs/data/dvs/mortfinal2007_worktable23r.pdf younger
people in Florida died at much higher rates than younger people in Massachusetts in 2007, but
people over 85 in Massachusetts died at much higher rates than people over 85 in Florida. But
before one retires to Florida for the sake of longevity, one might ask: are healthier older people
more prone to live in Florida (beaches and golf) and less healthy older people more prone to live
in Massachusetts (family and famous hospitals)? What other population differences play a role?
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How persistent is the effect? If you find the answer before I’m 85, please let me know.

D. Let X be a normal random variable with mean µ and variance σ21. Let Y be an independent
normal random variable with mean 0 and variance σ22. Write Z = X + Y . Let Ỹ be an
independent random variable with the same law as Y . Write Z̃ = X + Ỹ .

(a) Compute the correlation coefficient ρ of Z̃ and Z.

(b) Compute E[X|Z] and E[Z̃|Z]. Express the answer in a simple form involving ρ. Hint:
consider case µ = 0 first and find fX,Z(x, z). You know FX(x) and fZ|X=x(z). Alternate
hint: if Xi are i.i.d. normal with variance σ2, mean 0, and n ≥ k then argue by symmetry
that E[

∑k
i=1Xi|

∑n
i=1Xi = z] = z(k/n). Write X =

∑k
i=1Xi and Y =

∑n
k+1Xi. Fiddle

with k, n, σ2 to handle the case that σ21/σ
2
2 is rational.

Note that E[Z̃|Z] is closer to E[Z̃] = E[Z] than Z is. This is a case of what is called “regression
to the mean.” Let’s tell a few stories about that. An entrant to a free throw shooting
competition has a skill level that we denote by X, which is randomly distributed as a normal
random variable with mean µ and variance 2. During the actual competition, there is an
independent luck factor that we denote by Y , which is a normal random variable with variance
1 and mean zero. The entrant’s overall score is a Z = X + Y . If the entrant participates in a
second tournament, the new score will be Z̃ = X + Ỹ where Ỹ is an independent luck factor
with the same law as Y .

(c) Compute the standard deviation of Z. Given that Z is two standard deviations above its
expectation, how many standard deviations above its expectation do we expect Z̃ to be?

Imagine that people in some large group are randomly assigned to teams of 9 people each. Each
person’s skill level is an i.i.d. Gaussian with mean 0 and standard deviation 1. The team’s skill
level is the sum of the individual skill levels. You can check that a team’s skill level is a
Gaussian random variable with mean 0 and standard deviation 3.

(d) Given that a team’s total skill level is 6 (two standard deviations above the mean for
teams) what do we expect the skill level of a randomly chosen team member to be?

Each drug generated by a lab has an “true effectiveness” which is a normal random variable X
with variance 1 and expectation 0. In a statistical trial, there is an independent “due-to-luck
effectivness” normal random variable Y with variance 1 and expectation 0, and the “observed
effectiveness” is Z = X + Y .

(e) If we are given that the observed effectiveness is 2, what would we expect the observed
effectiveness to be in a second independent study of the same drug?

Remark: The following is from the abstract of the Nosek reproducibility study (recall Problem
Set 3) which attempted to reproduce 100 published psychology experiments: “The mean effect
size (r) of the replication effects (Mr = 0.197, SD = 0.257) was half the magnitude of the mean
effect size of the original effects (Mr = 0.403, SD = 0.188), representing a substantial decline.”
The fact that the effect sizes in the attempted replications were smaller than those in the
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original studies is not surprising from a regression to the mean point of view. Google Iorns
reproducibility for analogous work on cancer studies.

E. This problem will apply the “regression to the mean” ideas from the previous problem to a
toy model for university admissions. Let’s think about admissions at a (somewhat arbitrarily
chosen) group of five selective universities: Harvard, Stanford, MIT, Yale and Princeton. For
fall 2014, these universities all had (per usnews.com article I looked up) “yield rates” between
66 and 81 percent and class sizes between 1043 and 1654. If we refer to an admission letter to
one of these five universities as a golden ticket then in all 9570 golden tickets were issued and
7047 were used (i.e., a total of 7047 first year students enrolled at these schools). This means
there were 2523 unused golden tickets.

Who had these 2523 unused golden tickets? Somebody presumbly has a rough answer, but let’s
just speculate. One wild possibility is that all the unused tickets were held by 505 very lucky
students (with 5 unused golden tickets each) who all crossed the Atlantic to attend Oxford and
Cambridge. If this were true, then none of the 7047 golden ticket users would have an extra
unused ticket. Another wild possibility is that exactly 2523 of the 7047 golden ticket users
(about 35.8 percent) have exactly one unused ticket. In any case, the fraction of golden ticket
users with an unused ticket to spare is somewhere between 0 and .358, which implies that the
overwhelming majority of these 7047 entering students were accepted to the university they
attend and to none of the other four. The stereotypical “students who apply to all five, get
accepted to most” are a small minority. We would need more data to say more than that (where
individuals apply, how many apply early admission, how students decide between multiple
offers, how admissions criteria vary from place to place, etc.) So let’s move to an imaginary (and
perhaps not terribly similar) universe where the analysis is simpler. Then we’ll do a little math.

In Fancy College Country there are exactly five elite universities and 40,000 elite applicants. All
40,000 applicants apply to all five universities. The intrinsic strength of an applicant’s case is a
normal random variable X with mean 0 and variance 1. When a university reads the
application, the university assigns it a score S = X + Y where Y is an independent normal
random variable with mean 0 and variance 1. Think of X as the college-independent part of an
application’s strength and Y as the college-dependent part (perhaps reflecting the resonance of
the student’s background with university-specific goals, as well as the random mood of the
admission team). Each student has one value X but gets an independent Y value for each
university. Each university admits all applicants with scores above the 95th percentile in score
distribution. Since S has variance 2, this means they admit students whose scores exceed
C = Φ−1(.95) ·

√
2 ≈ 1.6449 ·

√
2 ≈ 2.326 where Φ(a) = (2π)−1/2

∫ a
−∞ e

−x2/2dx. To be admitted a
student’s score must exceed 2.326. Each university expects to admit 5 percent of its applicants.

(a) Compute, as a function of x, the conditional probability that the student is admitted to
the first university in the list, given that the student’s X value is x. In other words,
compute the probability that Y > C − x.

(b) How large does X have to be for this conditional probability to exceed .05? How about
.95? Find the probability that X exceeds the former threshold. And the latter. (Give
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numerical answers. Note the discrepancy: given their X values, many students have a .05
chance, but very few have a .95 chance. It is easier to be a contender than a sure thing.)

(c) Let A(x) be the conditional probability that the student is admitted to at least one
university on the list, given that the student’s X value is x. Compute A(x) using Φ and C
as defined above.

(d) Argue that the overall probability that a student is admitted to at least one university is
given by

∫∞
−∞(1/

√
2π)e−x

2/2A(x)dx and that the chance to be rejected by all universities

is
∫∞
−∞(1/

√
2π)e−x

2/2(1−A(x))dx.

(e) Try to compute (d) numerically in a package like wolframalpha and report how it goes.
You might (I did) have to fiddle a bit to get it to work. Here’s how I did it:

1. To see how wolframalpha represents Φ(x) type in

Integrate[(1/Sqrt[2Pi]) E^(-y^2/2), {y,-Infinity, x}]

You get some expression involving erf, which is a close relative of Φ.

2. Click on that to get plaintext. Replace x with (2.326− x) to get

1/2 (1+erf((2.326-x)/sqrt(2)))

3. Put parentheses about this and raise it to fifth power (to get a wolframalpha friendly
expression for conditional chance to be rejected everywhere, given x), multiply by
fX(x) and integrate:

Integrate[(1/sqrt(2Pi)) E^(-x^2/2)

(1/2 (1+erf((2.326-x)/sqrt(2))))^5, {x,-Infinity, Infinity}]

(f) Briefly justify the following conclusions. Each student has a 0.166363 chance to be
accepted at least somewhere. The expected number of students admitted to at least one
university is about 6655. The expected class sizes are about 1331 at each school, and each
university has a typical yield rate of about .67.

Remark: If admission were completely random (each university takes a student with
probability .05 independently of X) then the applicants would have a 1− (.95)5 ≈ .2262 chance
to get accepted to at least one university. We’d expect to see .2262 · 40000 ≈ 9048 students
admited to at least one university, and the yield rate for each university would be roughly .9048.
If the selection process were completely determined by X (so that all universities accept exactly
the same 2000 students) then there would be only 2000 students admitted to at least one
university and the yield rate would be .2 (with class sizes of only 400). Our .67 lies between
these extremes.

Remark: If some applicants applied to fewer than 5 universities (e.g., due to early admissions)
yield rates might be higher, since fewer admits would have multiple offers. If the variance of Y
were smaller, yields might be lower due to greater admission list overlap. If some admits chose
not to attend one of the 5 schools, that would also decrease yields.
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