
Cauchy, beta, gamma and the infinite expectation paradox

18.600 Problem Set 7, due April 19

Welcome to your seventh 18.600 problem set! This problem set features problems about beta,
Gamma, and Cauchy random variables. These random variables are not quite as ubiquitous as
others we have discussed (exponential, uniform, normal, Poisson, binomial) but they are fun and
do come up. The problems should help you internalize the definitions and some of the standard
interpretations. In particular we will explore the idea of beta distributions as Bayesian posteriors
for the p associated to a biased coin, where your prior was uniform but then you saw a few tosses.

Many of you are familiar with Pascal’s wager. The general idea is that if choosing A over
B comes with a finite cost but a positive probability (however small) of an infinite payoff, then
one should always choose A. Pascal’s conclusion was that if living a virtuous life leads (with even
a tiny probability) to an eternal reward, then it is a worthwhile sacrifice to make. A common
criticism is that this kind of thinking can lead to violence (killing heretics who might lead souls
astray, or dissidents who might obstruct an endless Marxist utopia) as well as virtue. A more
mathematical concern is that in principle there may be many choices, each of which we expect to
do an infinite amount of good (and perhaps also an infinite amount of harm) and that there is no
obvious mathematical way to compare the competing infinities.

The comparison difficulties associated with infinite expectations can arise even when the payoffs
themselves are finite with probability one (e.g., if the utility payout is a Cauchy random variable).
This problem set illustrates this point with a particularly vexing form of a famous envelope switch-
ing paradox. Interestingly, in this paradox, the conditional expectations used for decision making
are all finite; but a certain a priori expectation is infinite, and that is the root of the paradox. I
hope that you enjoy thinking about the story, and that it causes you at most a finite amount of
existential angst.

Please stop by my weekly office hours (2-249, Wednesday 3 to 5) for discussion.

A. FROM TEXTBOOK CHAPTER FIVE: Theoretical Exercise 26: If X is a beta random
variable with parameters a and b show that

E[X] =
a

a + b
,

Var(X) =
ab

(a + b)2(a + b + 1)
.

B. Let p be the fraction of MIT students who love Ariana Grande — or, more precisely, the
fraction who will say they love Ariana Grande when you ask (making it clear that you absolutely
require a simple yes or no answer). Let’s make believe that your initial Bayesian prior for p is
uniform on [0, 1]. Now ask three of your fellow students (actually do this!) one at a time whether
they love Ariana Grande, and write the pair (# yes answers so far, # no answers so far) before
you start and after each time you ask a question. For example, you will write the pairs

(0, 0), (1, 0), (2, 0), (3, 0)

1



if everyone you ask loves Ariana Grande. Pretend that you have chosen your people uniformly at
random from the large MIT population, so that each answer is yes with probabilty p and no with
probability (1− p) independently of the other answers. Then write down each of the four number
pairs, and beside each one draw a rough picture of the graph of the revised probability density
function for p that you would have at that point in time, along with its algebraic expression,
which should be a polynomial whose integral from 0 to 1 is 1. You can use graphing software if
you want. Beside each graph write down the corresponding conditional expectation for p (using
the results from part A) given what you know at that time.

Remark: Last year this question was asked about Taylor Swift. If you have a recommendation
for next year’s question, let me know. :) The ideal is somebody who is well known but whose
popularity within MIT is something most of us would be a priori unsure of, so that the uniform
prior doesn’t seem too unreasonable. (I have seen enough opinion polls to suspect that very few
national politicians are loved by more than 70 percent of a population...)

C. The following is one formulation of a famous “two envelope” paradox. Jill is a money-loving
individual who, given two options, invariably chooses the one that gives her the most money in
expectation. One day Harry, a trusted (and capable of delivering) individual, offers her the
following deal as a gift. He will secretely toss a fair coin until the first time that it comes up tails.
If there are n heads before the first tails, he will place 10n dollars in one envelope and 10n+1

dollars in the second envelope. (Thus, the probability that one envelope has 10n dollars and the
other has 10n+1 dollars is 2−n−1 for n ≥ 0.) Harry will then hand Jill the pair of envelopes
(randomly ordered, indistinguishable from the outside) and invite her to choose one. After Jill
chooses an envelope she will be allowed to open it. Once she does, she will be allowed to either
keep the money in the first envelope or switch to the second envelope and keep whatever is in the
second envelope. However, if she decides to switch, she has to pay a one dollar “switching fee.”

1. If Jill finds 100 dollars in the first envelope she opens, what is the conditional probability
that the other envelope contains 1000 dollars? What is the conditional probability that the
other envelope contains 10 dollars?

2. If Jill finds 100 dollars in the first envelope she opens, how much money does Jill expect to
win from the game if she does not switch envelopes? (Answer: 100 dollars.) How much does
she expect to win (net, after the switching fee) if she does switch envelopes?

3. Generalize the answers above to the case that the first envelope contains 10n dollars (for
n ≥ 0) instead of 100.

4. Jill concludes from the above that, no matter what she finds in the first envelope, she will
expect to earn more money if she switches envelopes and pays the one dollar switching fee.
This strikes Jill as a bit odd. If she knows she will always switch envelopes, why doesn’t she
just take the second envelope first and avoid the envelope switching fee? How can she be
maximizing her expected wealth if she spends an unnecessary “switching fee” dollar no
matter what? How does one resolve this apparent paradox? (Use the hints in the Lecture
24 slides as needed. Even with hints, it may take time to make peace with this problem.)
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D. Alice and Bob are interested in having a child and, after difficulty conceiving, decide to
undergo a medical procedure called IVF. In their universe, each couple has a random quantity p,
uniformly distributed on [0, 1], which indicates the probability that they will conceive a child
after a cycle of IVF treatment. (The value p depends on permanent biological characteristics of
Alice and Bob, but its value is unknown to them, so we model it as a random variable.) If Alice
and Bob attempt multiple cycles, each one succeeds with the same probability p, independently
of what happens on previous cycles.

(a) Explain intuitively why (in this universe) the probability that Alice and Bob conceive after
one cycle should be .5 (i.e., the expected value of p).

(b) Given that Alice and Bob did not conceive during the first (k − 1) cycles, what is the
updated Bayesian probability density for the random variable p?

(c) Use the answer in (b) to explicitly compute the expected value for p, given that the couple
did not conceive during the first (k − 1) cycles. The answer is the conditional probability
that the couple conceives during the kth cycle, given that they did not conceive during the
first (k − 1) cycles. (One can prove in general that if one first chooses r in some random
fashion and then tosses a coin that is heads with probability r, the overall probability of
heads is the expectation E[r].)

(d) Compute the conditional probability describe in (c) in a different way: imagine that
X0, X1, X2, . . . , Xk are uniformly and independently distributed on [0, 1]. Write p = X0 and
declare that the jth cycle succeeds if and only if Xj < X0. Show that this model is
equivalent to the one initially described, and then explain why the probability that
Xk < X0, given that X0 is the smallest of the set {X0, X1, . . . , Xk−1}, should be 1/(k + 1).
[Hint: use symmetry to argue that a priori the rank ordering of X0, X1, . . . , Xk is equally
likely to be given by each of the (k + 1)! possible permutations.]

(e) Suppose that instead of being uniform the random variable p is a priori distributed on [0, 1]
according to the density function f(x) = 2− 2x. (This might be more realistic, see remark
below.) Under this assumption, compute the probability of success on the kth cycle given
that the first (k− 1) cycles failed. [Hint: recognize f(x) as itself a beta random variable and
reduce to the previous case.]

Remark: This problem was inspired by a NY Times article called With in vitro fertilization
persistence pays off (look it up) which reports on a large study:

The rate of live births for participants after the first cycle in the new study was 29.5
percent, compared with 20.5 percent ater the fourth cycle, 17.4 percent after the sixth
cycle, and 15.7 percent after the ninth cycle.

The numbers start a bit below our answer in (e) (since .295 < 1/3) and end up larger (since
.157 > 1/11). This may suggest that p values are not distributed according the f that we guessed
(somewhat arbitrarily) in (e). On the other hand, maybe different people have different Bayesian
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priors for p (based on age, known physical issues, etc.) and those whose p values are expected a
priori to be small tend to discontinue IVF after fewer cycles; if so, this could explain the higher
reported success rates for later cycles.

E. Suppose X1, X2, . . . , X8 are independent Cauchy random variables. Compute the probability
that X1 + X2 + X3 > X4 + X5 + X6 + X7 + X8 − 8. (Hint: try combining the spinning flashlight
story with left-right symmetry and the fact that the average of independent Cauchy random
variables is itself a Cauchy random variable.)

F. On Planet A a site called rottentomatoes.com analyzes movie reviews. Each review is classified
“fresh” if it seems on balance positive, “rotten” otherwise. Each movie has an a priori quality
parameter p ∈ [0, 1]. After it is released, professional reviewers arrive one at a time and write
reviews, each of which is fresh with probability p (independently of the others). The
Tomatometer Score is the overall percentage of reviews that were fresh, expressed as a number
between 0 and 100. One can show — using the strong law of large numbers, which will appear
later in this course — that no matter what p is, the Tomatometer Score will (with probability
one) converge to 100p in the limit as the number of reviews tends to infinity; so e.g. if p = 3/5
then the Tomatometer score will converge to 60 in the long run.

1. Suppose one movie has quality parameter .5 and another .6. Use normal approximations to
estimate the probability the former gets a higher Tomatometer score than the latter after
each movie has 143 reviews. (Hint: remember Harper and Heloise.)

2. Repeat the above with one movie having parameter .8 and the other .9, and with 100
reviews for each movie. (In both this problem and the previous one, the higher quality
movie probably scores higher, but in neither case is it a sure thing.)

3. Imagine a studio makes a movie but has no idea in advance how well it will be received.
The movie has a quality parameter p, but the studio does not know what it is and a priori
considers p to be a uniformly random variable on [0, 1]. But then reviewers arrive one at a
time to make reviews, each rating the movie fresh with probability p and rotten otherwise.
Using beta random variables, give the conditional probability density for p given that one
has seen f fresh and r rotten reviews so far.

4. Argue that if the studio does not know p, and knows only the number of f and r reviews
seen so far, then it considers the probability of the next review being fresh to be

(f+1)
(f+1)+(r+1) . (You can use the things derived in the IVF problem.) Using this compute the
probability that the first four reviews are fresh, rotten, fresh, fresh in that order.

On Planet B, each released movie is initially given one fresh and one rotten review (to get the
ball rolling). After that reviewers arrive one at a time to write and post reviews. But these
reviewers do not form opinions independently; instead, each reviewer selects, uniformly at
random, one of the previously posted reviews and writes a review of the same type (fresh or
rotten). Let Fn be the fraction of the first n reviewers who rated a movie fresh. (We know
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F2 = 1/2, but F3 could be 1/3 or 2/3, and F4 could be 1/4, 2/4 or 3/4.) Ultimately an infinite
number of reviewers arrives, and the Tomatometer score is the limit limn→∞ 100Fn.

5. What is the probability on this planet that the first four reviews (after the “get the ball
rolling” two) are fresh, rotten, fresh, fresh in that order? Does your answer agree with the
answer computed above for the same sequence on Planet A? Would this still be be true if
we replaced “fresh, rotten, fresh, fresh” by any finite length sequence?

Remark: It seems oddly coincidental that each sequence has the same probability on Planet A
as on Planet B, even though the mechanism for generating the sequence is completely different.

6. Use comparison to Planet A to argue that on Planet B the limiting Tomatometer score is a
uniformly random variable on [0, 100]. (Google Pólya’s urn for more on this model.)

Remark: On Planet A, you can imagine that a sufficiently skilled movie expert could figure out
p after seeing an advance screening of the movie. This expert would then know exactly what the
Tomatometer score would converge to in the n→∞ limit. But on Planet B, it is impossible to
know anything at all about the limiting score just from seeing the movie.

Remark: Are the mechanisms of our world is closer to A (where reviewers see same movie but
otherwise work independently) or B (where reviewers influence each other, and final consensus is
unrelated to quality)? What explains why Mona Lisa and Starry Night are such iconic art works
and Baby Shark has 2 billion views? I have no answer, but I include a story below.

Quoted Remark (from Cass R. Sunstein’s book On Rumors): The Princeton sociologist
Matthew Salganik and his coauthors 14 created an artificial music market among 14,341
participants who were visitors to a website that was popular among young people. The
participants were given a list of previously unknown songs from unknown bands. They were
asked to listen to selections of any of the songs that interested them, to decide which songs (if
any) to download, and to assign a rating to the songs they chose. About half of the participants
made their decisions based on the names of the bands and the songs and their own independent
judgment about the quality of the music. This was the control group. The participants outside of
the control group were randomly assigned to one of eight possible subgroups. Within these
subgroups, participants could see how many times each song had been downloaded. Each of these
subgroups evolved on its own; participants in any particular world could see only the downloads
in their own subgroups.....

It turned out that people were dramatically influenced by the choices of their predecessors. In
every one of the eight subgroups, people were far more likely to download songs that had been
previously downloaded in significant numbers—and far less likely to download songs that had not
been so popular. Most strikingly, the success of songs was highly unpredictable. The songs that
did well or poorly in the control group, where people did not see other people’s judgments, could
perform very differently in the “social influence subgroups.” In those worlds, most songs could
become very popular or very unpopular, with everything depending on the choices of the first
participants to download them.
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