18.600: Lecture 33

Entropy

Scott Sheffield

MIT

Outline

Entropy

Noiseless coding theory

Conditional entropy

Outline

Entropy

Noiseless coding theory

Conditional entropy

What is entropy?

- Entropy is an important notion in thermodynamics, information theory, data compression, cryptography, etc.

What is entropy?

- Entropy is an important notion in thermodynamics, information theory, data compression, cryptography, etc.
- Familiar on some level to everyone who has studied chemistry or statistical physics.

What is entropy?

- Entropy is an important notion in thermodynamics, information theory, data compression, cryptography, etc.
- Familiar on some level to everyone who has studied chemistry or statistical physics.
- Kind of means amount of randomness or disorder.

What is entropy?

- Entropy is an important notion in thermodynamics, information theory, data compression, cryptography, etc.
- Familiar on some level to everyone who has studied chemistry or statistical physics.
- Kind of means amount of randomness or disorder.
- But can we give a mathematical definition? In particular, how do we define the entropy of a random variable?

Information

- Suppose we toss a fair coin k times.

Information

- Suppose we toss a fair coin k times.
- Then the state space S is the set of 2^{k} possible heads-tails sequences.

Information

- Suppose we toss a fair coin k times.
- Then the state space S is the set of 2^{k} possible heads-tails sequences.
- If X is the random sequence (so X is a random variable), then for each $x \in S$ we have $P\{X=x\}=2^{-k}$.

Information

- Suppose we toss a fair coin k times.
- Then the state space S is the set of 2^{k} possible heads-tails sequences.
- If X is the random sequence (so X is a random variable), then for each $x \in S$ we have $P\{X=x\}=2^{-k}$.
- In information theory it's quite common to use log to mean $\log _{2}$ instead of $\log _{e}$. We follow that convention in this lecture. In particular, this means that

$$
\log P\{X=x\}=-k
$$

for each $x \in S$.

Information

- Suppose we toss a fair coin k times.
- Then the state space S is the set of 2^{k} possible heads-tails sequences.
- If X is the random sequence (so X is a random variable), then for each $x \in S$ we have $P\{X=x\}=2^{-k}$.
- In information theory it's quite common to use log to mean $\log _{2}$ instead of $\log _{e}$. We follow that convention in this lecture. In particular, this means that

$$
\log P\{X=x\}=-k
$$

for each $x \in S$.

- Since there are 2^{k} values in S, it takes k "bits" to describe an element $x \in S$.

Information

- Suppose we toss a fair coin k times.
- Then the state space S is the set of 2^{k} possible heads-tails sequences.
- If X is the random sequence (so X is a random variable), then for each $x \in S$ we have $P\{X=x\}=2^{-k}$.
- In information theory it's quite common to use log to mean $\log _{2}$ instead of $\log _{e}$. We follow that convention in this lecture. In particular, this means that

$$
\log P\{X=x\}=-k
$$

for each $x \in S$.

- Since there are 2^{k} values in S, it takes k "bits" to describe an element $x \in S$.
- Intuitively, could say that when we learn that $X=x$, we have learned $k=-\log P\{X=x\}$ "bits of information".

Shannon entropy

- Shannon: famous MIT student/faculty member, wrote The Mathematical Theory of Communication in 1948.

Shannon entropy

- Shannon: famous MIT student/faculty member, wrote The Mathematical Theory of Communication in 1948.
- Goal is to define a notion of how much we "expect to learn" from a random variable or "how many bits of information a random variable contains" that makes sense for general experiments (which may not have anything to do with coins).

Shannon entropy

- Shannon: famous MIT student/faculty member, wrote The Mathematical Theory of Communication in 1948.
- Goal is to define a notion of how much we "expect to learn" from a random variable or "how many bits of information a random variable contains" that makes sense for general experiments (which may not have anything to do with coins).
- If a random variable X takes values $x_{1}, x_{2}, \ldots, x_{n}$ with positive probabilities $p_{1}, p_{2}, \ldots, p_{n}$ then we define the entropy of X by

$$
H(X)=\sum_{i=1}^{n} p_{i}\left(-\log p_{i}\right)=-\sum_{i=1}^{n} p_{i} \log p_{i}
$$

Shannon entropy

- Shannon: famous MIT student/faculty member, wrote The Mathematical Theory of Communication in 1948.
- Goal is to define a notion of how much we "expect to learn" from a random variable or "how many bits of information a random variable contains" that makes sense for general experiments (which may not have anything to do with coins).
- If a random variable X takes values $x_{1}, x_{2}, \ldots, x_{n}$ with positive probabilities $p_{1}, p_{2}, \ldots, p_{n}$ then we define the entropy of X by

$$
H(X)=\sum_{i=1}^{n} p_{i}\left(-\log p_{i}\right)=-\sum_{i=1}^{n} p_{i} \log p_{i}
$$

- This can be interpreted as the expectation of $\left(-\log p_{i}\right)$. The value $\left(-\log p_{i}\right)$ is the "amount of surprise" when we see x_{i}.

Twenty questions with Harry

- Harry always thinks of one of the following animals:

x	$P\{X=x\}$	$-\log P\{X=x\}$
Dog	$1 / 4$	2
Cat	$1 / 4$	2
Cow	$1 / 8$	3
Pig	$1 / 16$	4
Squirrel	$1 / 16$	4
Mouse	$1 / 16$	4
Owl	$1 / 16$	4
Sloth	$1 / 32$	5
Hippo	$1 / 32$	5
Yak	$1 / 32$	5
Zebra	$1 / 64$	6
Rhino	$1 / 64$	6

Twenty questions with Harry

- Harry always thinks of one of the following animals:

x	$P\{X=x\}$	$-\log P\{X=x\}$
Dog	$1 / 4$	2
Cat	$1 / 4$	2
Cow	$1 / 8$	3
Pig	$1 / 16$	4
Squirrel	$1 / 16$	4
Mouse	$1 / 16$	4
Owl	$1 / 16$	4
Sloth	$1 / 32$	5
Hippo	$1 / 32$	5
Yak	$1 / 32$	5
Zebra	$1 / 64$	6
Rhino	$1 / 64$	6

- Can learn animal with $H(X)$ questions on average.

Twenty questions with Harry

- Harry always thinks of one of the following animals:

x	$P\{X=x\}$	$-\log P\{X=x\}$
Dog	$1 / 4$	2
Cat	$1 / 4$	2
Cow	$1 / 8$	3
Pig	$1 / 16$	4
Squirrel	$1 / 16$	4
Mouse	$1 / 16$	4
Owl	$1 / 16$	4
Sloth	$1 / 32$	5
Hippo	$1 / 32$	5
Yak	$1 / 32$	5
Zebra	$1 / 64$	6
Rhino	$1 / 64$	6

- Can learn animal with $H(X)$ questions on average.
- General: expect $H(X)$ questions if probabilities powers of 2. Otherwise $H(X)+1$ suffice. (Try rounding down to 2 powers.)

Other examples

- Again, if a random variable X takes the values $x_{1}, x_{2}, \ldots, x_{n}$ with positive probabilities $p_{1}, p_{2}, \ldots, p_{n}$ then we define the entropy of X by

$$
H(X)=\sum_{i=1}^{n} p_{i}\left(-\log p_{i}\right)=-\sum_{i=1}^{n} p_{i} \log p_{i}
$$

Other examples

- Again, if a random variable X takes the values $x_{1}, x_{2}, \ldots, x_{n}$ with positive probabilities $p_{1}, p_{2}, \ldots, p_{n}$ then we define the entropy of X by

$$
H(X)=\sum_{i=1}^{n} p_{i}\left(-\log p_{i}\right)=-\sum_{i=1}^{n} p_{i} \log p_{i}
$$

- If X takes one value with probability 1 , what is $H(X)$?

Other examples

- Again, if a random variable X takes the values $x_{1}, x_{2}, \ldots, x_{n}$ with positive probabilities $p_{1}, p_{2}, \ldots, p_{n}$ then we define the entropy of X by

$$
H(X)=\sum_{i=1}^{n} p_{i}\left(-\log p_{i}\right)=-\sum_{i=1}^{n} p_{i} \log p_{i}
$$

- If X takes one value with probability 1 , what is $H(X)$?
- If X takes k values with equal probability, what is $H(X)$?

Other examples

- Again, if a random variable X takes the values $x_{1}, x_{2}, \ldots, x_{n}$ with positive probabilities $p_{1}, p_{2}, \ldots, p_{n}$ then we define the entropy of X by

$$
H(X)=\sum_{i=1}^{n} p_{i}\left(-\log p_{i}\right)=-\sum_{i=1}^{n} p_{i} \log p_{i}
$$

- If X takes one value with probability 1 , what is $H(X)$?
- If X takes k values with equal probability, what is $H(X)$?
- What is $H(X)$ if X is a geometric random variable with parameter $p=1 / 2$?

Entropy for a pair of random variables

- Consider random variables X, Y with joint mass function $p\left(x_{i}, y_{j}\right)=P\left\{X=x_{i}, Y=y_{j}\right\}$.

Entropy for a pair of random variables

- Consider random variables X, Y with joint mass function $p\left(x_{i}, y_{j}\right)=P\left\{X=x_{i}, Y=y_{j}\right\}$.
- Then we write

$$
H(X, Y)=-\sum_{i} \sum_{j} p\left(x_{i}, y_{j}\right) \log p\left(x_{i}, y_{i}\right)
$$

Entropy for a pair of random variables

- Consider random variables X, Y with joint mass function $p\left(x_{i}, y_{j}\right)=P\left\{X=x_{i}, Y=y_{j}\right\}$.
- Then we write

$$
H(X, Y)=-\sum_{i} \sum_{j} p\left(x_{i}, y_{j}\right) \log p\left(x_{i}, y_{i}\right)
$$

- $H(X, Y)$ is just the entropy of the pair (X, Y) (viewed as a random variable itself).

Entropy for a pair of random variables

- Consider random variables X, Y with joint mass function $p\left(x_{i}, y_{j}\right)=P\left\{X=x_{i}, Y=y_{j}\right\}$.
- Then we write

$$
H(X, Y)=-\sum_{i} \sum_{j} p\left(x_{i}, y_{j}\right) \log p\left(x_{i}, y_{i}\right)
$$

- $H(X, Y)$ is just the entropy of the pair (X, Y) (viewed as a random variable itself).
- Claim: if X and Y are independent, then

$$
H(X, Y)=H(X)+H(Y)
$$

Why is that?

Outline

Entropy

Noiseless coding theory

Conditional entropy

Outline

Entropy

Noiseless coding theory

Conditional entropy

Coding values by bit sequences

- David Huffman (as MIT student) published in "A Method for the Construction of Minimum-Redundancy Code" in 1952.
- If X takes four values A, B, C, D we can code them by:

$$
\begin{aligned}
& A \leftrightarrow 00 \\
& B \leftrightarrow 01 \\
& C \leftrightarrow 10 \\
& D \leftrightarrow 11
\end{aligned}
$$

Coding values by bit sequences

- David Huffman (as MIT student) published in "A Method for the Construction of Minimum-Redundancy Code" in 1952.
- If X takes four values A, B, C, D we can code them by:

$$
\begin{aligned}
& A \leftrightarrow 00 \\
& B \leftrightarrow 01 \\
& C \leftrightarrow 10 \\
& D \leftrightarrow 11
\end{aligned}
$$

- Or by

$$
\begin{aligned}
A & \leftrightarrow 0 \\
B & \leftrightarrow 10 \\
C & \leftrightarrow 110 \\
D & \leftrightarrow 111
\end{aligned}
$$

Coding values by bit sequences

- David Huffman (as MIT student) published in "A Method for the Construction of Minimum-Redundancy Code" in 1952.
- If X takes four values A, B, C, D we can code them by:

$$
\begin{aligned}
& A \leftrightarrow 00 \\
& B \leftrightarrow 01 \\
& C \leftrightarrow 10 \\
& D \leftrightarrow 11
\end{aligned}
$$

- Or by

$$
\begin{aligned}
A & \leftrightarrow 0 \\
B & \leftrightarrow 10 \\
C & \leftrightarrow 110 \\
D & \leftrightarrow 111
\end{aligned}
$$

- No sequence in code is an extension of another.

Coding values by bit sequences

- David Huffman (as MIT student) published in "A Method for the Construction of Minimum-Redundancy Code" in 1952.
- If X takes four values A, B, C, D we can code them by:

$$
\begin{aligned}
& A \leftrightarrow 00 \\
& B \leftrightarrow 01 \\
& C \leftrightarrow 10 \\
& D \leftrightarrow 11
\end{aligned}
$$

- Or by

$$
\begin{aligned}
A & \leftrightarrow 0 \\
B & \leftrightarrow 10 \\
C & \leftrightarrow 110 \\
D & \leftrightarrow 111
\end{aligned}
$$

- No sequence in code is an extension of another.
- What does 100111110010 spell?

Coding values by bit sequences

- David Huffman (as MIT student) published in "A Method for the Construction of Minimum-Redundancy Code" in 1952.
- If X takes four values A, B, C, D we can code them by:

$$
\begin{aligned}
& A \leftrightarrow 00 \\
& B \leftrightarrow 01 \\
& C \leftrightarrow 10 \\
& D \leftrightarrow 11
\end{aligned}
$$

- Or by

$$
\begin{aligned}
A & \leftrightarrow 0 \\
B & \leftrightarrow 10 \\
C & \leftrightarrow 110 \\
D & \leftrightarrow 111
\end{aligned}
$$

- No sequence in code is an extension of another.
- What does 100111110010 spell?
- A coding scheme is equivalent to a twenty questions strategy.

Twenty questions theorem

- Noiseless coding theorem: Expected number of questions you need is always at least the entropy.

Twenty questions theorem

- Noiseless coding theorem: Expected number of questions you need is always at least the entropy.
- Note: The expected number of questions is the entropy if each question divides the space of possibilities exactly in half (measured by probability).

Twenty questions theorem

- Noiseless coding theorem: Expected number of questions you need is always at least the entropy.
- Note: The expected number of questions is the entropy if each question divides the space of possibilities exactly in half (measured by probability).
- In this case, let X take values x_{1}, \ldots, x_{N} with probabilities $p\left(x_{1}\right), \ldots, p\left(x_{N}\right)$. Then if a valid coding of X assigns n_{i} bits to x_{i}, we have

$$
\sum_{i=1}^{N} n_{i} p\left(x_{i}\right) \geq H(X)=-\sum_{i=1}^{N} p\left(x_{i}\right) \log p\left(x_{i}\right)
$$

Twenty questions theorem

- Noiseless coding theorem: Expected number of questions you need is always at least the entropy.
- Note: The expected number of questions is the entropy if each question divides the space of possibilities exactly in half (measured by probability).
- In this case, let X take values x_{1}, \ldots, x_{N} with probabilities $p\left(x_{1}\right), \ldots, p\left(x_{N}\right)$. Then if a valid coding of X assigns n_{i} bits to x_{i}, we have

$$
\sum_{i=1}^{N} n_{i} p\left(x_{i}\right) \geq H(X)=-\sum_{i=1}^{N} p\left(x_{i}\right) \log p\left(x_{i}\right)
$$

- Data compression: $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. instances of X. Do there exist encoding schemes such that the expected number of bits required to encode the entire sequence is about $H(X) n$ (assuming n is sufficiently large)?

Twenty questions theorem

- Noiseless coding theorem: Expected number of questions you need is always at least the entropy.
- Note: The expected number of questions is the entropy if each question divides the space of possibilities exactly in half (measured by probability).
- In this case, let X take values x_{1}, \ldots, x_{N} with probabilities $p\left(x_{1}\right), \ldots, p\left(x_{N}\right)$. Then if a valid coding of X assigns n_{i} bits to x_{i}, we have

$$
\sum_{i=1}^{N} n_{i} p\left(x_{i}\right) \geq H(X)=-\sum_{i=1}^{N} p\left(x_{i}\right) \log p\left(x_{i}\right)
$$

- Data compression: $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. instances of X. Do there exist encoding schemes such that the expected number of bits required to encode the entire sequence is about $H(X) n$ (assuming n is sufficiently large)?
- Yes. Consider space of N^{n} possibilities. Use "rounding to 2 power" trick, Expect to need at most $H(x) n+1$ bits.

Outline

Entropy

Noiseless coding theory

Conditional entropy

Outline

Entropy

Noiseless coding theory

Conditional entropy

Conditional entropy

- Let's again consider random variables X, Y with joint mass function $p\left(x_{i}, y_{j}\right)=P\left\{X=x_{i}, Y=y_{j}\right\}$ and write

$$
H(X, Y)=-\sum_{i} \sum_{j} p\left(x_{i}, y_{j}\right) \log p\left(x_{i}, y_{i}\right)
$$

Conditional entropy

- Let's again consider random variables X, Y with joint mass function $p\left(x_{i}, y_{j}\right)=P\left\{X=x_{i}, Y=y_{j}\right\}$ and write

$$
H(X, Y)=-\sum_{i} \sum_{j} p\left(x_{i}, y_{j}\right) \log p\left(x_{i}, y_{i}\right)
$$

- But now let's not assume they are independent.

Conditional entropy

- Let's again consider random variables X, Y with joint mass function $p\left(x_{i}, y_{j}\right)=P\left\{X=x_{i}, Y=y_{j}\right\}$ and write

$$
H(X, Y)=-\sum_{i} \sum_{j} p\left(x_{i}, y_{j}\right) \log p\left(x_{i}, y_{i}\right)
$$

- But now let's not assume they are independent.
- We can define a conditional entropy of X given $Y=y_{j}$ by

$$
H_{Y=y_{j}}(X)=-\sum_{i} p\left(x_{i} \mid y_{j}\right) \log p\left(x_{i} \mid y_{j}\right)
$$

Conditional entropy

- Let's again consider random variables X, Y with joint mass function $p\left(x_{i}, y_{j}\right)=P\left\{X=x_{i}, Y=y_{j}\right\}$ and write

$$
H(X, Y)=-\sum_{i} \sum_{j} p\left(x_{i}, y_{j}\right) \log p\left(x_{i}, y_{i}\right)
$$

- But now let's not assume they are independent.
- We can define a conditional entropy of X given $Y=y_{j}$ by

$$
H_{Y=y_{j}}(X)=-\sum_{i} p\left(x_{i} \mid y_{j}\right) \log p\left(x_{i} \mid y_{j}\right)
$$

- This is just the entropy of the conditional distribution. Recall that $p\left(x_{i} \mid y_{j}\right)=P\left\{X=x_{i} \mid Y=y_{j}\right\}$.

Conditional entropy

- Let's again consider random variables X, Y with joint mass function $p\left(x_{i}, y_{j}\right)=P\left\{X=x_{i}, Y=y_{j}\right\}$ and write

$$
H(X, Y)=-\sum_{i} \sum_{j} p\left(x_{i}, y_{j}\right) \log p\left(x_{i}, y_{i}\right)
$$

- But now let's not assume they are independent.
- We can define a conditional entropy of X given $Y=y_{j}$ by

$$
H_{Y=y_{j}}(X)=-\sum_{i} p\left(x_{i} \mid y_{j}\right) \log p\left(x_{i} \mid y_{j}\right)
$$

- This is just the entropy of the conditional distribution. Recall that $p\left(x_{i} \mid y_{j}\right)=P\left\{X=x_{i} \mid Y=y_{j}\right\}$.
- We similarly define $H_{Y}(X)=\sum_{j} H_{Y=y_{j}}(X) p_{Y}\left(y_{j}\right)$. This is the expected amount of conditional entropy that there will be in Y after we have observed X.

Properties of conditional entropy

- Definitions: $H_{Y=y_{j}}(X)=-\sum_{i} p\left(x_{i} \mid y_{j}\right) \log p\left(x_{i} \mid y_{j}\right)$ and $H_{Y}(X)=\sum_{j} H_{Y=y_{j}}(X) p_{Y}\left(y_{j}\right)$.

Properties of conditional entropy

- Definitions: $H_{Y=y_{j}}(X)=-\sum_{i} p\left(x_{i} \mid y_{j}\right) \log p\left(x_{i} \mid y_{j}\right)$ and $H_{Y}(X)=\sum_{j} H_{Y=y_{j}}(X) p_{Y}\left(y_{j}\right)$.
- Important property one: $H(X, Y)=H(Y)+H_{Y}(X)$.

Properties of conditional entropy

- Definitions: $H_{Y=y_{j}}(X)=-\sum_{i} p\left(x_{i} \mid y_{j}\right) \log p\left(x_{i} \mid y_{j}\right)$ and $H_{Y}(X)=\sum_{j} H_{Y=y_{j}}(X) p_{Y}\left(y_{j}\right)$.
- Important property one: $H(X, Y)=H(Y)+H_{Y}(X)$.
- In words, the expected amount of information we learn when discovering (X, Y) is equal to expected amount we learn when discovering Y plus expected amount when we subsequently discover X (given our knowledge of Y).

Properties of conditional entropy

- Definitions: $H_{Y=y_{j}}(X)=-\sum_{i} p\left(x_{i} \mid y_{j}\right) \log p\left(x_{i} \mid y_{j}\right)$ and $H_{Y}(X)=\sum_{j} H_{Y=y_{j}}(X) p_{Y}\left(y_{j}\right)$.
- Important property one: $H(X, Y)=H(Y)+H_{Y}(X)$.
- In words, the expected amount of information we learn when discovering (X, Y) is equal to expected amount we learn when discovering Y plus expected amount when we subsequently discover X (given our knowledge of Y).
- To prove this property, recall that $p\left(x_{i}, y_{j}\right)=p_{Y}\left(y_{j}\right) p\left(x_{i} \mid y_{j}\right)$.

Properties of conditional entropy

- Definitions: $H_{Y=y_{j}}(X)=-\sum_{i} p\left(x_{i} \mid y_{j}\right) \log p\left(x_{i} \mid y_{j}\right)$ and $H_{Y}(X)=\sum_{j} H_{Y=y_{j}}(X) p_{Y}\left(y_{j}\right)$.
- Important property one: $H(X, Y)=H(Y)+H_{Y}(X)$.
- In words, the expected amount of information we learn when discovering (X, Y) is equal to expected amount we learn when discovering Y plus expected amount when we subsequently discover X (given our knowledge of Y).
- To prove this property, recall that $p\left(x_{i}, y_{j}\right)=p_{Y}\left(y_{j}\right) p\left(x_{i} \mid y_{j}\right)$.
- Thus, $H(X, Y)=-\sum_{i} \sum_{j} p\left(x_{i}, y_{j}\right) \log p\left(x_{i}, y_{j}\right)=$ $-\sum_{i} \sum_{j} p_{Y}\left(y_{j}\right) p\left(x_{i} \mid y_{j}\right)\left[\log p_{Y}\left(y_{j}\right)+\log p\left(x_{i} \mid y_{j}\right)\right]=$
$-\sum_{j} p_{Y}\left(y_{j}\right) \log p_{Y}\left(y_{j}\right) \sum_{i} p\left(x_{i} \mid y_{j}\right)-$
$\sum_{j} p_{Y}\left(y_{j}\right) \sum_{i} p\left(x_{i} \mid y_{j}\right) \log p\left(x_{i} \mid y_{j}\right)=H(Y)+H_{Y}(X)$.

Properties of conditional entropy

- Definitions: $H_{Y=y_{j}}(X)=-\sum_{i} p\left(x_{i} \mid y_{j}\right) \log p\left(x_{i} \mid y_{j}\right)$ and $H_{Y}(X)=\sum_{j} H_{Y=y_{j}}(X) p_{Y}\left(y_{j}\right)$.

Properties of conditional entropy

- Definitions: $H_{Y=y_{j}}(X)=-\sum_{i} p\left(x_{i} \mid y_{j}\right) \log p\left(x_{i} \mid y_{j}\right)$ and $H_{Y}(X)=\sum_{j} H_{Y=y_{j}}(X) p_{Y}\left(y_{j}\right)$.
- Important property two: $H_{Y}(X) \leq H(X)$ with equality if and only if X and Y are independent.

Properties of conditional entropy

- Definitions: $H_{Y=y_{j}}(X)=-\sum_{i} p\left(x_{i} \mid y_{j}\right) \log p\left(x_{i} \mid y_{j}\right)$ and $H_{Y}(X)=\sum_{j} H_{Y=y_{j}}(X) p_{Y}\left(y_{j}\right)$.
- Important property two: $H_{Y}(X) \leq H(X)$ with equality if and only if X and Y are independent.
- In words, the expected amount of information we learn when discovering X after having discovered Y can't be more than the expected amount of information we would learn when discovering X before knowing anything about Y.

Properties of conditional entropy

- Definitions: $H_{Y=y_{j}}(X)=-\sum_{i} p\left(x_{i} \mid y_{j}\right) \log p\left(x_{i} \mid y_{j}\right)$ and $H_{Y}(X)=\sum_{j} H_{Y=y_{j}}(X) p_{Y}\left(y_{j}\right)$.
- Important property two: $H_{Y}(X) \leq H(X)$ with equality if and only if X and Y are independent.
- In words, the expected amount of information we learn when discovering X after having discovered Y can't be more than the expected amount of information we would learn when discovering X before knowing anything about Y.
- Proof: note that $\mathcal{E}\left(p_{1}, p_{2}, \ldots, p_{n}\right):=-\sum p_{i} \log p_{i}$ is concave.

Properties of conditional entropy

- Definitions: $H_{Y=y_{j}}(X)=-\sum_{i} p\left(x_{i} \mid y_{j}\right) \log p\left(x_{i} \mid y_{j}\right)$ and $H_{Y}(X)=\sum_{j} H_{Y=y_{j}}(X) p_{Y}\left(y_{j}\right)$.
- Important property two: $H_{Y}(X) \leq H(X)$ with equality if and only if X and Y are independent.
- In words, the expected amount of information we learn when discovering X after having discovered Y can't be more than the expected amount of information we would learn when discovering X before knowing anything about Y.
- Proof: note that $\mathcal{E}\left(p_{1}, p_{2}, \ldots, p_{n}\right):=-\sum p_{i} \log p_{i}$ is concave.
- The vector $v=\left\{p_{X}\left(x_{1}\right), p_{X}\left(x_{2}\right), \ldots, p_{X}\left(x_{n}\right)\right\}$ is a weighted average of vectors $v_{j}:=\left\{p_{X}\left(x_{1} \mid y_{j}\right), p_{X}\left(x_{2} \mid y_{j}\right), \ldots, p_{X}\left(x_{n} \mid y_{j}\right)\right\}$ as j ranges over possible values. By (vector version of) Jensen's inequality,

$$
H(X)=\mathcal{E}(v)=\mathcal{E}\left(\sum p_{Y}\left(y_{j}\right) v_{j}\right) \geq \sum p_{Y}\left(y_{j}\right) \mathcal{E}\left(v_{j}\right)=H_{Y}(X)
$$

