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Recall: conditional probability distributions

I It all starts with the definition of conditional probability:
P(A|B) = P(AB)/P(B).

I If X and Y are jointly discrete random variables, we can use
this to define a probability mass function for X given Y = y .

I That is, we write pX |Y (x |y) = P{X = x |Y = y} = p(x ,y)
pY (y) .

I In words: first restrict sample space to pairs (x , y) with given
y value. Then divide the original mass function by pY (y) to
obtain a probability mass function on the restricted space.

I We do something similar when X and Y are continuous
random variables. In that case we write fX |Y (x |y) = f (x ,y)

fY (y) .

I Often useful to think of sampling (X ,Y ) as a two-stage
process. First sample Y from its marginal distribution, obtain
Y = y for some particular y . Then sample X from its
probability distribution given Y = y .

I Marginal law of X is weighted average of conditional laws.
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Example

I Let X be value on one die roll, Y value on second die roll,
and write Z = X + Y .

I What is the probability distribution for X given that Y = 5?

I Answer: uniform on {1, 2, 3, 4, 5, 6}.
I What is the probability distribution for Z given that Y = 5?

I Answer: uniform on {6, 7, 8, 9, 10, 11}.
I What is the probability distribution for Y given that Z = 5?

I Answer: uniform on {1, 2, 3, 4}.
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Conditional expectation

I Now, what do we mean by E [X |Y = y ]? This should just be
the expectation of X in the conditional probability measure
for X given that Y = y .

I Can write this as
E [X |Y = y ] =

∑
x xP{X = x |Y = y} =

∑
x xpX |Y (x |y).

I Can make sense of this in the continuum setting as well.

I In continuum setting we had fX |Y (x |y) = f (x ,y)
fY (y) . So

E [X |Y = y ] =
∫∞
−∞ x f (x ,y)

fY (y) dx
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Conditional expectation as a random variable

I Can think of E [X |Y ] as a function of the random variable Y .
When Y = y it takes the value E [X |Y = y ].

I So E [X |Y ] is itself a random variable. It happens to depend
only on the value of Y .

I Thinking of E [X |Y ] as a random variable, we can ask what its
expectation is. What is E [E [X |Y ]]?

I Very useful fact: E [E [X |Y ]] = E [X ].

I In words: what you expect to expect X to be after learning Y
is same as what you now expect X to be.

I Proof in discrete case:
E [X |Y = y ] =

∑
x xP{X = x |Y = y} =

∑
x x

p(x ,y)
pY (y) .

I Recall that, in general, E [g(Y )] =
∑

y pY (y)g(y).

I E [E [X |Y = y ]] =
∑

y pY (y)
∑

x x
p(x ,y)
pY (y) =

∑
x

∑
y p(x , y)x =

E [X ].
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Conditional variance

I Definition:
Var(X |Y ) = E

[
(X − E [X |Y ])2|Y

]
= E

[
X 2 − E [X |Y ]2|Y

]
.

I Var(X |Y ) is a random variable that depends on Y . It is the
variance of X in the conditional distribution for X given Y .

I Note E [Var(X |Y )] = E [E [X 2|Y ]]− E [E [X |Y ]2|Y ] =
E [X 2]− E [E [X |Y ]2].

I If we subtract E [X ]2 from first term and add equivalent value
E [E [X |Y ]]2 to the second, RHS becomes
Var[X ]−Var[E [X |Y ]], which implies following:

I Useful fact: Var(X ) = Var(E [X |Y ]) + E [Var(X |Y )].

I One can discover X in two stages: first sample Y from
marginal and compute E [X |Y ], then sample X from
distribution given Y value.

I Above fact breaks variance into two parts, corresponding to
these two stages.
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these two stages.
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Example

I Let X be a random variable of variance σ2X and Y an
independent random variable of variance σ2Y and write
Z = X + Y . Assume E [X ] = E [Y ] = 0.

I What are the covariances Cov(X ,Y ) and Cov(X ,Z )?

I How about the correlation coefficients ρ(X ,Y ) and ρ(X ,Z )?

I What is E [Z |X ]? And how about Var(Z |X )?

I Both of these values are functions of X . Former is just X .
Latter happens to be a constant-valued function of X , i.e.,
happens not to actually depend on X . We have
Var(Z |X ) = σ2Y .

I Can we check the formula
Var(Z ) = Var(E [Z |X ]) + E [Var(Z |X )] in this case?
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Interpretation

I Sometimes think of the expectation E [Y ] as a “best guess” or
“best predictor” of the value of Y .

I It is best in the sense that at among all constants m, the
expectation E [(Y −m)2] is minimized when m = E [Y ].

I But what if we allow non-constant predictors? What if the
predictor is allowed to depend on the value of a random
variable X that we can observe directly?

I Let g(x) be such a function. Then E [(y − g(X ))2] is
minimized when g(X ) = E [Y |X ].
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Examples

I Toss 100 coins. What’s the conditional expectation of the
number of heads given that there are k heads among the first
fifty tosses?

I k + 25

I What’s the conditional expectation of the number of aces in a
five-card poker hand given that the first two cards in the hand
are aces?

I 2 + 3 · 2/50
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