18.600: Lecture 27

 Conditional expectation

 Conditional expectation}

Scott Sheffield

MIT

Outline

Conditional probability distributions

Conditional expectation

Interpretation and examples

Outline

Conditional probability distributions

Conditional expectation

Interpretation and examples

Recall: conditional probability distributions

- It all starts with the definition of conditional probability: $P(A \mid B)=P(A B) / P(B)$.

Recall: conditional probability distributions

- It all starts with the definition of conditional probability: $P(A \mid B)=P(A B) / P(B)$.
- If X and Y are jointly discrete random variables, we can use this to define a probability mass function for X given $Y=y$.

Recall: conditional probability distributions

- It all starts with the definition of conditional probability: $P(A \mid B)=P(A B) / P(B)$.
- If X and Y are jointly discrete random variables, we can use this to define a probability mass function for X given $Y=y$.
- That is, we write $p_{X \mid Y}(x \mid y)=P\{X=x \mid Y=y\}=\frac{p(x, y)}{p_{Y}(y)}$.

Recall: conditional probability distributions

- It all starts with the definition of conditional probability: $P(A \mid B)=P(A B) / P(B)$.
- If X and Y are jointly discrete random variables, we can use this to define a probability mass function for X given $Y=y$.
- That is, we write $p_{X \mid Y}(x \mid y)=P\{X=x \mid Y=y\}=\frac{p(x, y)}{p_{Y}(y)}$.
- In words: first restrict sample space to pairs (x, y) with given y value. Then divide the original mass function by $p_{Y}(y)$ to obtain a probability mass function on the restricted space.

Recall: conditional probability distributions

- It all starts with the definition of conditional probability: $P(A \mid B)=P(A B) / P(B)$.
- If X and Y are jointly discrete random variables, we can use this to define a probability mass function for X given $Y=y$.
- That is, we write $p_{X \mid Y}(x \mid y)=P\{X=x \mid Y=y\}=\frac{p(x, y)}{p_{Y}(y)}$.
- In words: first restrict sample space to pairs (x, y) with given y value. Then divide the original mass function by $p_{Y}(y)$ to obtain a probability mass function on the restricted space.
- We do something similar when X and Y are continuous random variables. In that case we write $f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}$.

Recall: conditional probability distributions

- It all starts with the definition of conditional probability: $P(A \mid B)=P(A B) / P(B)$.
- If X and Y are jointly discrete random variables, we can use this to define a probability mass function for X given $Y=y$.
- That is, we write $p_{X \mid Y}(x \mid y)=P\{X=x \mid Y=y\}=\frac{p(x, y)}{p_{Y}(y)}$.
- In words: first restrict sample space to pairs (x, y) with given y value. Then divide the original mass function by $p_{Y}(y)$ to obtain a probability mass function on the restricted space.
- We do something similar when X and Y are continuous random variables. In that case we write $f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}$.
- Often useful to think of sampling (X, Y) as a two-stage process. First sample Y from its marginal distribution, obtain $Y=y$ for some particular y. Then sample X from its probability distribution given $Y=y$.

Recall: conditional probability distributions

- It all starts with the definition of conditional probability: $P(A \mid B)=P(A B) / P(B)$.
- If X and Y are jointly discrete random variables, we can use this to define a probability mass function for X given $Y=y$.
- That is, we write $p_{X \mid Y}(x \mid y)=P\{X=x \mid Y=y\}=\frac{p(x, y)}{p_{Y}(y)}$.
- In words: first restrict sample space to pairs (x, y) with given y value. Then divide the original mass function by $p_{Y}(y)$ to obtain a probability mass function on the restricted space.
- We do something similar when X and Y are continuous random variables. In that case we write $f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}$.
- Often useful to think of sampling (X, Y) as a two-stage process. First sample Y from its marginal distribution, obtain $Y=y$ for some particular y. Then sample X from its probability distribution given $Y=y$.
- Marginal law of X is weighted average of conditional laws.

Example

- Let X be value on one die roll, Y value on second die roll, and write $Z=X+Y$.

Example

- Let X be value on one die roll, Y value on second die roll, and write $Z=X+Y$.
- What is the probability distribution for X given that $Y=5$?

Example

- Let X be value on one die roll, Y value on second die roll, and write $Z=X+Y$.
- What is the probability distribution for X given that $Y=5$?
- Answer: uniform on $\{1,2,3,4,5,6\}$.

Example

- Let X be value on one die roll, Y value on second die roll, and write $Z=X+Y$.
- What is the probability distribution for X given that $Y=5$?
- Answer: uniform on $\{1,2,3,4,5,6\}$.
- What is the probability distribution for Z given that $Y=5$?

Example

- Let X be value on one die roll, Y value on second die roll, and write $Z=X+Y$.
- What is the probability distribution for X given that $Y=5$?
- Answer: uniform on $\{1,2,3,4,5,6\}$.
- What is the probability distribution for Z given that $Y=5$?
- Answer: uniform on $\{6,7,8,9,10,11\}$.

Example

- Let X be value on one die roll, Y value on second die roll, and write $Z=X+Y$.
- What is the probability distribution for X given that $Y=5$?
- Answer: uniform on $\{1,2,3,4,5,6\}$.
- What is the probability distribution for Z given that $Y=5$?
- Answer: uniform on $\{6,7,8,9,10,11\}$.
- What is the probability distribution for Y given that $Z=5$?

Example

- Let X be value on one die roll, Y value on second die roll, and write $Z=X+Y$.
- What is the probability distribution for X given that $Y=5$?
- Answer: uniform on $\{1,2,3,4,5,6\}$.
- What is the probability distribution for Z given that $Y=5$?
- Answer: uniform on $\{6,7,8,9,10,11\}$.
- What is the probability distribution for Y given that $Z=5$?
- Answer: uniform on $\{1,2,3,4\}$.

Outline

Conditional probability distributions

Conditional expectation

Interpretation and examples

Outline

Conditional probability distributions

Conditional expectation

Interpretation and examples

Conditional expectation

- Now, what do we mean by $E[X \mid Y=y]$? This should just be the expectation of X in the conditional probability measure for X given that $Y=y$.

Conditional expectation

- Now, what do we mean by $E[X \mid Y=y]$? This should just be the expectation of X in the conditional probability measure for X given that $Y=y$.
- Can write this as

$$
E[X \mid Y=y]=\sum_{x} x P\{X=x \mid Y=y\}=\sum_{x} x p_{X \mid Y}(x \mid y)
$$

Conditional expectation

- Now, what do we mean by $E[X \mid Y=y]$? This should just be the expectation of X in the conditional probability measure for X given that $Y=y$.
- Can write this as

$$
E[X \mid Y=y]=\sum_{x} x P\{X=x \mid Y=y\}=\sum_{x} x p_{X \mid Y}(x \mid y) .
$$

- Can make sense of this in the continuum setting as well.

Conditional expectation

- Now, what do we mean by $E[X \mid Y=y]$? This should just be the expectation of X in the conditional probability measure for X given that $Y=y$.
- Can write this as

$$
E[X \mid Y=y]=\sum_{x} x P\{X=x \mid Y=y\}=\sum_{x} x p_{X \mid Y}(x \mid y)
$$

- Can make sense of this in the continuum setting as well.
- In continuum setting we had $f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}$. So

$$
E[X \mid Y=y]=\int_{-\infty}^{\infty} x \frac{f(x, y)}{f_{Y}(y)} d x
$$

Example

- Let X be value on one die roll, Y value on second die roll, and write $Z=X+Y$.

Example

- Let X be value on one die roll, Y value on second die roll, and write $Z=X+Y$.
- What is $E[X \mid Y=5]$?

Example

- Let X be value on one die roll, Y value on second die roll, and write $Z=X+Y$.
- What is $E[X \mid Y=5]$?
- What is $E[Z \mid Y=5]$?

Example

- Let X be value on one die roll, Y value on second die roll, and write $Z=X+Y$.
- What is $E[X \mid Y=5]$?
- What is $E[Z \mid Y=5]$?
- What is $E[Y \mid Z=5]$?

Conditional expectation as a random variable

- Can think of $E[X \mid Y]$ as a function of the random variable Y. When $Y=y$ it takes the value $E[X \mid Y=y]$.

Conditional expectation as a random variable

- Can think of $E[X \mid Y]$ as a function of the random variable Y. When $Y=y$ it takes the value $E[X \mid Y=y]$.
- So $E[X \mid Y]$ is itself a random variable. It happens to depend only on the value of Y.

Conditional expectation as a random variable

- Can think of $E[X \mid Y]$ as a function of the random variable Y. When $Y=y$ it takes the value $E[X \mid Y=y]$.
- So $E[X \mid Y]$ is itself a random variable. It happens to depend only on the value of Y.
- Thinking of $E[X \mid Y]$ as a random variable, we can ask what its expectation is. What is $E[E[X \mid Y]]$?

Conditional expectation as a random variable

- Can think of $E[X \mid Y]$ as a function of the random variable Y. When $Y=y$ it takes the value $E[X \mid Y=y]$.
- So $E[X \mid Y]$ is itself a random variable. It happens to depend only on the value of Y.
- Thinking of $E[X \mid Y]$ as a random variable, we can ask what its expectation is. What is $E[E[X \mid Y]]$?
- Very useful fact: $E[E[X \mid Y]]=E[X]$.

Conditional expectation as a random variable

- Can think of $E[X \mid Y]$ as a function of the random variable Y. When $Y=y$ it takes the value $E[X \mid Y=y]$.
- So $E[X \mid Y]$ is itself a random variable. It happens to depend only on the value of Y.
- Thinking of $E[X \mid Y]$ as a random variable, we can ask what its expectation is. What is $E[E[X \mid Y]]$?
- Very useful fact: $E[E[X \mid Y]]=E[X]$.
- In words: what you expect to expect X to be after learning Y is same as what you now expect X to be.

Conditional expectation as a random variable

- Can think of $E[X \mid Y]$ as a function of the random variable Y. When $Y=y$ it takes the value $E[X \mid Y=y]$.
- So $E[X \mid Y]$ is itself a random variable. It happens to depend only on the value of Y.
- Thinking of $E[X \mid Y]$ as a random variable, we can ask what its expectation is. What is $E[E[X \mid Y]]$?
- Very useful fact: $E[E[X \mid Y]]=E[X]$.
- In words: what you expect to expect X to be after learning Y is same as what you now expect X to be.
- Proof in discrete case:

$$
E[X \mid Y=y]=\sum_{x} x P\{X=x \mid Y=y\}=\sum_{x} x \frac{p(x, y)}{p_{Y}(y)}
$$

Conditional expectation as a random variable

- Can think of $E[X \mid Y]$ as a function of the random variable Y. When $Y=y$ it takes the value $E[X \mid Y=y]$.
- So $E[X \mid Y]$ is itself a random variable. It happens to depend only on the value of Y.
- Thinking of $E[X \mid Y]$ as a random variable, we can ask what its expectation is. What is $E[E[X \mid Y]]$?
- Very useful fact: $E[E[X \mid Y]]=E[X]$.
- In words: what you expect to expect X to be after learning Y is same as what you now expect X to be.
- Proof in discrete case:
$E[X \mid Y=y]=\sum_{x} x P\{X=x \mid Y=y\}=\sum_{x} x \frac{p(x, y)}{p_{Y}(y)}$.
- Recall that, in general, $E[g(Y)]=\sum_{y} p_{Y}(y) g(y)$.

Conditional expectation as a random variable

- Can think of $E[X \mid Y]$ as a function of the random variable Y. When $Y=y$ it takes the value $E[X \mid Y=y]$.
- So $E[X \mid Y]$ is itself a random variable. It happens to depend only on the value of Y.
- Thinking of $E[X \mid Y]$ as a random variable, we can ask what its expectation is. What is $E[E[X \mid Y]]$?
- Very useful fact: $E[E[X \mid Y]]=E[X]$.
- In words: what you expect to expect X to be after learning Y is same as what you now expect X to be.
- Proof in discrete case:
$E[X \mid Y=y]=\sum_{x} x P\{X=x \mid Y=y\}=\sum_{x} x \frac{p(x, y)}{p_{Y}(y)}$.
- Recall that, in general, $E[g(Y)]=\sum_{y} p_{Y}(y) g(y)$.
- $E[E[X \mid Y=y]]=\sum_{y} p_{Y}(y) \sum_{x} x \frac{p(x, y)}{p_{Y}(y)}=\sum_{x} \sum_{y} p(x, y) x=$ $E[X]$.

Conditional variance

- Definition:

$$
\operatorname{Var}(X \mid Y)=E\left[(X-E[X \mid Y])^{2} \mid Y\right]=E\left[X^{2}-E[X \mid Y]^{2} \mid Y\right]
$$

Conditional variance

- Definition:

$$
\operatorname{Var}(X \mid Y)=E\left[(X-E[X \mid Y])^{2} \mid Y\right]=E\left[X^{2}-E[X \mid Y]^{2} \mid Y\right]
$$

- $\operatorname{Var}(X \mid Y)$ is a random variable that depends on Y. It is the variance of X in the conditional distribution for X given Y.

Conditional variance

- Definition:

$$
\operatorname{Var}(X \mid Y)=E\left[(X-E[X \mid Y])^{2} \mid Y\right]=E\left[X^{2}-E[X \mid Y]^{2} \mid Y\right]
$$

- $\operatorname{Var}(X \mid Y)$ is a random variable that depends on Y. It is the variance of X in the conditional distribution for X given Y.
- Note $E[\operatorname{Var}(X \mid Y)]=E\left[E\left[X^{2} \mid Y\right]\right]-E\left[E[X \mid Y]^{2} \mid Y\right]=$ $E\left[X^{2}\right]-E\left[E[X \mid Y]^{2}\right]$.

Conditional variance

- Definition:

$$
\operatorname{Var}(X \mid Y)=E\left[(X-E[X \mid Y])^{2} \mid Y\right]=E\left[X^{2}-E[X \mid Y]^{2} \mid Y\right]
$$

- $\operatorname{Var}(X \mid Y)$ is a random variable that depends on Y. It is the variance of X in the conditional distribution for X given Y.
- Note $E[\operatorname{Var}(X \mid Y)]=E\left[E\left[X^{2} \mid Y\right]\right]-E\left[E[X \mid Y]^{2} \mid Y\right]=$ $E\left[X^{2}\right]-E\left[E[X \mid Y]^{2}\right]$.
- If we subtract $E[X]^{2}$ from first term and add equivalent value $E[E[X \mid Y]]^{2}$ to the second, RHS becomes $\operatorname{Var}[X]-\operatorname{Var}[E[X \mid Y]]$, which implies following:

Conditional variance

- Definition:

$$
\operatorname{Var}(X \mid Y)=E\left[(X-E[X \mid Y])^{2} \mid Y\right]=E\left[X^{2}-E[X \mid Y]^{2} \mid Y\right]
$$

- $\operatorname{Var}(X \mid Y)$ is a random variable that depends on Y. It is the variance of X in the conditional distribution for X given Y.
- Note $E[\operatorname{Var}(X \mid Y)]=E\left[E\left[X^{2} \mid Y\right]\right]-E\left[E[X \mid Y]^{2} \mid Y\right]=$ $E\left[X^{2}\right]-E\left[E[X \mid Y]^{2}\right]$.
- If we subtract $E[X]^{2}$ from first term and add equivalent value $E[E[X \mid Y]]^{2}$ to the second, RHS becomes $\operatorname{Var}[X]-\operatorname{Var}[E[X \mid Y]]$, which implies following:
- Useful fact: $\operatorname{Var}(X)=\operatorname{Var}(E[X \mid Y])+E[\operatorname{Var}(X \mid Y)]$.

Conditional variance

- Definition:

$$
\operatorname{Var}(X \mid Y)=E\left[(X-E[X \mid Y])^{2} \mid Y\right]=E\left[X^{2}-E[X \mid Y]^{2} \mid Y\right]
$$

- $\operatorname{Var}(X \mid Y)$ is a random variable that depends on Y. It is the variance of X in the conditional distribution for X given Y.
- Note $E[\operatorname{Var}(X \mid Y)]=E\left[E\left[X^{2} \mid Y\right]\right]-E\left[E[X \mid Y]^{2} \mid Y\right]=$ $E\left[X^{2}\right]-E\left[E[X \mid Y]^{2}\right]$.
- If we subtract $E[X]^{2}$ from first term and add equivalent value $E[E[X \mid Y]]^{2}$ to the second, RHS becomes $\operatorname{Var}[X]-\operatorname{Var}[E[X \mid Y]]$, which implies following:
- Useful fact: $\operatorname{Var}(X)=\operatorname{Var}(E[X \mid Y])+E[\operatorname{Var}(X \mid Y)]$.
- One can discover X in two stages: first sample Y from marginal and compute $E[X \mid Y]$, then sample X from distribution given Y value.

Conditional variance

- Definition:

$$
\operatorname{Var}(X \mid Y)=E\left[(X-E[X \mid Y])^{2} \mid Y\right]=E\left[X^{2}-E[X \mid Y]^{2} \mid Y\right]
$$

- $\operatorname{Var}(X \mid Y)$ is a random variable that depends on Y. It is the variance of X in the conditional distribution for X given Y.
- Note $E[\operatorname{Var}(X \mid Y)]=E\left[E\left[X^{2} \mid Y\right]\right]-E\left[E[X \mid Y]^{2} \mid Y\right]=$ $E\left[X^{2}\right]-E\left[E[X \mid Y]^{2}\right]$.
- If we subtract $E[X]^{2}$ from first term and add equivalent value $E[E[X \mid Y]]^{2}$ to the second, RHS becomes $\operatorname{Var}[X]-\operatorname{Var}[E[X \mid Y]]$, which implies following:
- Useful fact: $\operatorname{Var}(X)=\operatorname{Var}(E[X \mid Y])+E[\operatorname{Var}(X \mid Y)]$.
- One can discover X in two stages: first sample Y from marginal and compute $E[X \mid Y]$, then sample X from distribution given Y value.
- Above fact breaks variance into two parts, corresponding to these two stages.

Example

- Let X be a random variable of variance σ_{X}^{2} and Y an independent random variable of variance σ_{Y}^{2} and write $Z=X+Y$. Assume $E[X]=E[Y]=0$.

Example

- Let X be a random variable of variance σ_{X}^{2} and Y an independent random variable of variance σ_{Y}^{2} and write $Z=X+Y$. Assume $E[X]=E[Y]=0$.
- What are the covariances $\operatorname{Cov}(X, Y)$ and $\operatorname{Cov}(X, Z)$?

Example

- Let X be a random variable of variance σ_{X}^{2} and Y an independent random variable of variance σ_{Y}^{2} and write $Z=X+Y$. Assume $E[X]=E[Y]=0$.
- What are the covariances $\operatorname{Cov}(X, Y)$ and $\operatorname{Cov}(X, Z)$?
- How about the correlation coefficients $\rho(X, Y)$ and $\rho(X, Z)$?

Example

- Let X be a random variable of variance σ_{X}^{2} and Y an independent random variable of variance σ_{Y}^{2} and write $Z=X+Y$. Assume $E[X]=E[Y]=0$.
- What are the covariances $\operatorname{Cov}(X, Y)$ and $\operatorname{Cov}(X, Z)$?
- How about the correlation coefficients $\rho(X, Y)$ and $\rho(X, Z)$?
- What is $E[Z \mid X]$? And how about $\operatorname{Var}(Z \mid X)$?

Example

- Let X be a random variable of variance σ_{X}^{2} and Y an independent random variable of variance σ_{Y}^{2} and write $Z=X+Y$. Assume $E[X]=E[Y]=0$.
- What are the covariances $\operatorname{Cov}(X, Y)$ and $\operatorname{Cov}(X, Z)$?
- How about the correlation coefficients $\rho(X, Y)$ and $\rho(X, Z)$?
- What is $E[Z \mid X]$? And how about $\operatorname{Var}(Z \mid X)$?
- Both of these values are functions of X. Former is just X. Latter happens to be a constant-valued function of X, i.e., happens not to actually depend on X. We have

$$
\operatorname{Var}(Z \mid X)=\sigma_{Y}^{2}
$$

Example

- Let X be a random variable of variance σ_{X}^{2} and Y an independent random variable of variance σ_{Y}^{2} and write $Z=X+Y$. Assume $E[X]=E[Y]=0$.
- What are the covariances $\operatorname{Cov}(X, Y)$ and $\operatorname{Cov}(X, Z)$?
- How about the correlation coefficients $\rho(X, Y)$ and $\rho(X, Z)$?
- What is $E[Z \mid X]$? And how about $\operatorname{Var}(Z \mid X)$?
- Both of these values are functions of X. Former is just X. Latter happens to be a constant-valued function of X, i.e., happens not to actually depend on X. We have $\operatorname{Var}(Z \mid X)=\sigma_{Y}^{2}$.
- Can we check the formula $\operatorname{Var}(Z)=\operatorname{Var}(E[Z \mid X])+E[\operatorname{Var}(Z \mid X)]$ in this case?

Outline

Conditional probability distributions

Conditional expectation

Interpretation and examples

Outline

Conditional probability distributions

Conditional expectation

Interpretation and examples

Interpretation

- Sometimes think of the expectation $E[Y]$ as a "best guess" or "best predictor" of the value of Y.

Interpretation

- Sometimes think of the expectation $E[Y]$ as a "best guess" or "best predictor" of the value of Y.
- It is best in the sense that at among all constants m, the expectation $E\left[(Y-m)^{2}\right]$ is minimized when $m=E[Y]$.

Interpretation

- Sometimes think of the expectation $E[Y]$ as a "best guess" or "best predictor" of the value of Y.
- It is best in the sense that at among all constants m, the expectation $E\left[(Y-m)^{2}\right]$ is minimized when $m=E[Y]$.
- But what if we allow non-constant predictors? What if the predictor is allowed to depend on the value of a random variable X that we can observe directly?

Interpretation

- Sometimes think of the expectation $E[Y]$ as a "best guess" or "best predictor" of the value of Y.
- It is best in the sense that at among all constants m, the expectation $E\left[(Y-m)^{2}\right]$ is minimized when $m=E[Y]$.
- But what if we allow non-constant predictors? What if the predictor is allowed to depend on the value of a random variable X that we can observe directly?
- Let $g(x)$ be such a function. Then $E\left[(y-g(X))^{2}\right]$ is minimized when $g(X)=E[Y \mid X]$.

Examples

- Toss 100 coins. What's the conditional expectation of the number of heads given that there are k heads among the first fifty tosses?

Examples

- Toss 100 coins. What's the conditional expectation of the number of heads given that there are k heads among the first fifty tosses?
- $k+25$

Examples

- Toss 100 coins. What's the conditional expectation of the number of heads given that there are k heads among the first fifty tosses?
- $k+25$
- What's the conditional expectation of the number of aces in a five-card poker hand given that the first two cards in the hand are aces?

Examples

- Toss 100 coins. What's the conditional expectation of the number of heads given that there are k heads among the first fifty tosses?
- $k+25$
- What's the conditional expectation of the number of aces in a five-card poker hand given that the first two cards in the hand are aces?
- $2+3 \cdot 2 / 50$

