18.600: Lecture 25
Lectures 15-24 Review

Scott Sheffield

MIT
Outline

Continuous random variables

Problems motivated by coin tossing

Random variable properties
Continuous random variables

Problems motivated by coin tossing

Random variable properties
Say X is a **continuous random variable** if there exists a **probability density function** $f = f_X$ on \mathbb{R} such that

$$P\{X \in B\} = \int_B f(x)dx := \int 1_B(x)f(x)dx.$$
Continuous random variables

Say X is a **continuous random variable** if there exists a **probability density function** $f = f_X$ on \mathbb{R} such that

$$P\{X \in B\} = \int_B f(x) \, dx := \int 1_B(x) f(x) \, dx.$$

We may assume $\int_{\mathbb{R}} f(x) \, dx = \int_{-\infty}^{\infty} f(x) \, dx = 1$ and f is non-negative.
Say X is a **continuous random variable** if there exists a **probability density function** $f = f_X$ on \mathbb{R} such that

$$P\{X \in B\} = \int_B f(x)dx := \int 1_B(x)f(x)dx.$$

We may assume $\int_{\mathbb{R}} f(x)dx = \int_{-\infty}^{\infty} f(x)dx = 1$ and f is non-negative.

Probability of interval $[a, b]$ is given by $\int_a^b f(x)dx$, the area under f between a and b.
Continuous random variables

Say X is a **continuous random variable** if there exists a **probability density function** $f = f_X$ on \mathbb{R} such that $P\{X \in B\} = \int_B f(x)dx := \int 1_B(x)f(x)dx$.

We may assume $\int_{\mathbb{R}} f(x)dx = \int_{-\infty}^{\infty} f(x)dx = 1$ and f is non-negative.

Probability of interval $[a, b]$ is given by $\int_a^b f(x)dx$, the area under f between a and b.

Probability of any single point is zero.
Say X is a **continuous random variable** if there exists a **probability density function** $f = f_X$ on \mathbb{R} such that $P\{X \in B\} = \int_B f(x)dx := \int 1_B(x)f(x)dx$.

We may assume $\int_{\mathbb{R}} f(x)dx = \int_{-\infty}^{\infty} f(x)dx = 1$ and f is non-negative.

Probability of interval $[a, b]$ is given by $\int_a^b f(x)dx$, the area under f between a and b.

Probability of any single point is zero.

Define **cumulative distribution function**
\[
F(a) = F_X(a) := P\{X < a\} = P\{X \leq a\} = \int_{-\infty}^{a} f(x)dx.
\]
Recall that when X was a discrete random variable, with $p(x) = P\{X = x\}$, we wrote

$$E[X] = \sum_{x: p(x) > 0} p(x)x.$$
Expectations of continuous random variables

- Recall that when X was a discrete random variable, with $p(x) = P\{X = x\}$, we wrote

$$E[X] = \sum_{x:p(x)>0} p(x)x.$$

- How should we define $E[X]$ when X is a continuous random variable?
Expectations of continuous random variables

- Recall that when X was a discrete random variable, with $p(x) = P\{X = x\}$, we wrote
 \[E[X] = \sum_{x: p(x) > 0} p(x)x. \]

- How should we define $E[X]$ when X is a continuous random variable?

- Answer: $E[X] = \int_{-\infty}^{\infty} f(x)x\,dx$.
Expectations of continuous random variables

- Recall that when X was a discrete random variable, with $p(x) = P\{X = x\}$, we wrote
 \[
 E[X] = \sum_{x: p(x) > 0} p(x)x.
 \]

- How should we define $E[X]$ when X is a continuous random variable?
- Answer: $E[X] = \int_{-\infty}^{\infty} f(x)xdx$.

- Recall that when X was a discrete random variable, with $p(x) = P\{X = x\}$, we wrote
 \[
 E[g(X)] = \sum_{x: p(x) > 0} p(x)g(x).
 \]
Expectations of continuous random variables

- Recall that when X was a discrete random variable, with $p(x) = P\{X = x\}$, we wrote

\[E[X] = \sum_{x: p(x) > 0} p(x)x. \]

- How should we define $E[X]$ when X is a continuous random variable?
- Answer: $E[X] = \int_{-\infty}^{\infty} f(x)x\,dx$.

- Recall that when X was a discrete random variable, with $p(x) = P\{X = x\}$, we wrote

\[E[g(X)] = \sum_{x: p(x) > 0} p(x)g(x). \]

- What is the analog when X is a continuous random variable?
Expectations of continuous random variables

- Recall that when X was a discrete random variable, with $p(x) = P\{X = x\}$, we wrote

$$E[X] = \sum_{x: p(x) > 0} p(x)x.$$

- How should we define $E[X]$ when X is a continuous random variable?

- Answer: $E[X] = \int_{-\infty}^{\infty} f(x)x\,dx$.

- Recall that when X was a discrete random variable, with $p(x) = P\{X = x\}$, we wrote

$$E[g(X)] = \sum_{x: p(x) > 0} p(x)g(x).$$

- What is the analog when X is a continuous random variable?

- Answer: we will write $E[g(X)] = \int_{-\infty}^{\infty} f(x)g(x)\,dx$.
Suppose X is a continuous random variable with mean μ. We can write $\text{Var}[X] = E[(X - \mu)^2]$, same as in the discrete case.

Next, if $g = g_1 + g_2$ then $E[g(X)] = \int g_1(x)f(x)\,dx + \int g_2(x)f(x)\,dx = \int (g_1(x) + g_2(x))f(x)\,dx = E[g_1(X)] + E[g_2(X)]$.

Furthermore, $E[ag(X)] = aE[g(X)]$ when a is a constant.

Just as in the discrete case, we can expand the variance expression as $\text{Var}[X] = E[X^2] - 2\mu E[X] + \mu^2$ and use additivity of expectation to say that $\text{Var}[X] = E[X^2] - 2\mu^2 + \mu^2 = E[X^2] - E[X]^2$.

Expectation of square minus square of expectation. This formula is often useful for calculations.
Suppose X is a continuous random variable with mean μ.

We can write $\text{Var}[X] = E[(X - \mu)^2]$, same as in the discrete case.
Suppose X is a continuous random variable with mean μ.

We can write $\text{Var}[X] = E[(X - \mu)^2]$, same as in the discrete case.

Next, if $g = g_1 + g_2$ then
\[E[g(X)] = \int g_1(x)f(x)dx + \int g_2(x)f(x)dx = \int (g_1(x) + g_2(x))f(x)dx = E[g_1(X)] + E[g_2(X)]. \]
Suppose X is a continuous random variable with mean μ.

We can write $\text{Var}[X] = E[(X - \mu)^2]$, same as in the discrete case.

Next, if $g = g_1 + g_2$ then

$$E[g(X)] = \int g_1(x)f(x)dx + \int g_2(x)f(x)dx = \int (g_1(x) + g_2(x))f(x)dx = E[g_1(X)] + E[g_2(X)].$$

Furthermore, $E[ag(X)] = aE[g(X)]$ when a is a constant.
Suppose X is a continuous random variable with mean μ.

We can write $\text{Var}[X] = E[(X - \mu)^2]$, same as in the discrete case.

Next, if $g = g_1 + g_2$ then
\[
E[g(X)] = \int g_1(x)f(x)dx + \int g_2(x)f(x)dx = \\
\int (g_1(x) + g_2(x))f(x)dx = E[g_1(X)] + E[g_2(X)].
\]

Furthermore, $E[ag(X)] = aE[g(X)]$ when a is a constant.

Just as in the discrete case, we can expand the variance expression as $\text{Var}[X] = E[X^2 - 2\mu X + \mu^2]$ and use additivity of expectation to say that
\[
\text{Var}[X] = E[X^2] - 2\mu E[X] + E[\mu^2] = E[X^2] - 2\mu^2 + \mu^2 = \\
\]
Suppose X is a continuous random variable with mean μ.

We can write $\text{Var}[X] = E[(X - \mu)^2]$, same as in the discrete case.

Next, if $g = g_1 + g_2$ then
$$E[g(X)] = \int g_1(x)f(x)dx + \int g_2(x)f(x)dx = \int (g_1(x) + g_2(x))f(x)dx = E[g_1(X)] + E[g_2(X)].$$

Furthermore, $E[ag(X)] = aE[g(X)]$ when a is a constant.

Just as in the discrete case, we can expand the variance expression as $\text{Var}[X] = E[X^2 - 2\mu X + \mu^2]$ and use additivity of expectation to say that
Suppose X is a continuous random variable with mean μ.

We can write $\text{Var}[X] = E[(X - \mu)^2]$, same as in the discrete case.

Next, if $g = g_1 + g_2$ then

$$E[g(X)] = \int g_1(x)f(x)\,dx + \int g_2(x)f(x)\,dx = \int (g_1(x) + g_2(x))f(x)\,dx = E[g_1(X)] + E[g_2(X)].$$

Furthermore, $E[ag(X)] = aE[g(X)]$ when a is a constant.

Just as in the discrete case, we can expand the variance expression as $\text{Var}[X] = E[X^2] - 2\mu X + \mu^2$ and use additivity of expectation to say that

Expectation of square minus square of expectation.

This formula is often useful for calculations.
Continuous random variables

Problems motivated by coin tossing

Random variable properties
Outline

Continuous random variables

Problems motivated by coin tossing

Random variable properties
Much of what we have done in this course can be motivated by the i.i.d. sequence X_i where each X_i is 1 with probability p and 0 otherwise. Write $S_n = \sum_{i=1}^{n} X_i$.

Binomial (number of heads in n tosses), geometric (steps required to obtain one heads), negative binomial (steps required to obtain n heads).

Standard normal approximates law of $S_n - E[S_n]$ over $SD(S_n)$. Here $E[S_n] = np$ and $SD(S_n) = \sqrt{Var(S_n)} = \sqrt{npq}$ where $q = 1-p$.

Poisson is limit of binomial as $n \to \infty$ when $p = \lambda/n$.

Poisson point process: toss one λ/n coin during each length $1/n$ time increment, take $n \to \infty$ limit.

Exponential: time till first event in λ Poisson point process.

Gamma distribution: time till nth event in λ Poisson point process.
Much of what we have done in this course can be motivated by the i.i.d. sequence X_i where each X_i is 1 with probability p and 0 otherwise. Write $S_n = \sum_{i=1}^{n} X_n$.

Binomial (S_n — number of heads in n tosses), **geometric** (steps required to obtain one heads), **negative binomial** (steps required to obtain n heads).
Much of what we have done in this course can be motivated by the i.i.d. sequence X_i where each X_i is 1 with probability p and 0 otherwise. Write $S_n = \sum_{i=1}^{n} X_i$.

- **Binomial** (S_n — number of heads in n tosses), **geometric** (steps required to obtain one heads), **negative binomial** (steps required to obtain n heads).

- **Standard normal** approximates law of $\frac{S_n - E[S_n]}{SD(S_n)}$. Here $E[S_n] = np$ and $SD(S_n) = \sqrt{Var(S_n)} = \sqrt{npq}$ where $q = 1 - p$.

Poisson is limit of binomial as $n \to \infty$ when $p = \lambda/n$.

Poisson point process: toss one λ/n coin during each length $1/n$ time increment, take $n \to \infty$ limit.

Exponential: time till first event in λ Poisson point process.

Gamma distribution: time till nth event in λ Poisson point process.
It’s the coins, stupid

Much of what we have done in this course can be motivated by the i.i.d. sequence X_i where each X_i is 1 with probability p and 0 otherwise. Write $S_n = \sum_{i=1}^{n} X_i$.

- **Binomial** (S_n — number of heads in n tosses), **geometric** (steps required to obtain one heads), **negative binomial** (steps required to obtain n heads).

- **Standard normal** approximates law of $\frac{S_n - E[S_n]}{SD(S_n)}$. Here $E[S_n] = np$ and $SD(S_n) = \sqrt{Var(S_n)} = \sqrt{npq}$ where $q = 1 - p$.

- **Poisson** is limit of binomial as $n \to \infty$ when $p = \lambda/n$.

- **Poisson point process**
 - Toss one λ/n coin during each length $1/n$ time increment, take $n \to \infty$ limit.

- **Exponential**
 - Time till first event in λ Poisson point process.

- **Gamma distribution**
 - Time till nth event in λ Poisson point process.
Much of what we have done in this course can be motivated by the i.i.d. sequence X_i where each X_i is 1 with probability p and 0 otherwise. Write $S_n = \sum_{i=1}^{n} X_i$.

Binomial (S_n — number of heads in n tosses), **geometric** (steps required to obtain one head), **negative binomial** (steps required to obtain n heads).

Standard normal approximates law of $\frac{S_n - E[S_n]}{SD(S_n)}$. Here $E[S_n] = np$ and $SD(S_n) = \sqrt{Var(S_n)} = \sqrt{npq}$ where $q = 1 - p$.

Poisson is limit of binomial as $n \to \infty$ when $p = \lambda/n$.

Poisson point process: toss one λ/n coin during each length $1/n$ time increment, take $n \to \infty$ limit.
Much of what we have done in this course can be motivated by the i.i.d. sequence X_i where each X_i is 1 with probability p and 0 otherwise. Write $S_n = \sum_{i=1}^{n} X_i$.

- **Binomial** (S_n — number of heads in n tosses), **geometric** (steps required to obtain one heads), **negative binomial** (steps required to obtain n heads).

- **Standard normal** approximates law of $\frac{S_n - E[S_n]}{SD(S_n)}$. Here $E[S_n] = np$ and $SD(S_n) = \sqrt{Var(S_n)} = \sqrt{npq}$ where $q = 1 - p$.

- **Poisson** is limit of binomial as $n \to \infty$ when $p = \lambda/n$.

- **Poisson point process**: toss one λ/n coin during each length $1/n$ time increment, take $n \to \infty$ limit.

- **Exponential**: time till first event in λ Poisson point process.
Much of what we have done in this course can be motivated by the i.i.d. sequence X_i where each X_i is 1 with probability p and 0 otherwise. Write $S_n = \sum_{i=1}^{n} X_i$.

Binomial (S_n — number of heads in n tosses), **geometric** (steps required to obtain one heads), **negative binomial** (steps required to obtain n heads).

Standard normal approximates law of $\frac{S_n - E[S_n]}{SD(S_n)}$. Here $E[S_n] = np$ and $SD(S_n) = \sqrt{Var(S_n)} = \sqrt{npq}$ where $q = 1 - p$.

Poisson is limit of binomial as $n \to \infty$ when $p = \lambda/n$.

Poisson point process: toss one λ/n coin during each length $1/n$ time increment, take $n \to \infty$ limit.

Exponential: time till first event in λ Poisson point process.

Gamma distribution: time till nth event in λ Poisson point process.
Discrete random variable properties derivable from coin toss intuition

- **Sum of two independent binomial random variables** with parameters \((n_1, p)\) and \((n_2, p)\) is itself binomial \((n_1 + n_2, p)\).
Discrete random variable properties derivable from coin toss intuition

- **Sum of two independent binomial random variables** with parameters \((n_1, p)\) and \((n_2, p)\) is itself binomial \((n_1 + n_2, p)\).
- **Sum of \(n\) independent geometric random variables** with parameter \(p\) is negative binomial with parameter \((n, p)\).
Discrete random variable properties derivable from coin toss intuition

- **Sum of two independent binomial random variables** with parameters \((n_1, p)\) and \((n_2, p)\) is itself binomial \((n_1 + n_2, p)\).

- **Sum of \(n\) independent geometric random variables** with parameter \(p\) is negative binomial with parameter \((n, p)\).

- **Expectation of geometric random variable** with parameter \(p\) is \(1/p\).
Discrete random variable properties derivable from coin toss intuition

- **Sum of two independent binomial random variables** with parameters \((n_1, p)\) and \((n_2, p)\) is itself binomial \((n_1 + n_2, p)\).
- **Sum of \(n\) independent geometric random variables** with parameter \(p\) is negative binomial with parameter \((n, p)\).
- **Expectation of geometric random variable** with parameter \(p\) is \(1/p\).
- **Expectation of binomial random variable** with parameters \((n, p)\) is \(np\).
Discrete random variable properties derivable from coin toss intuition

- **Sum of two independent binomial random variables** with parameters \((n_1, p)\) and \((n_2, p)\) is itself binomial \((n_1 + n_2, p)\).

- **Sum of \(n\) independent geometric random variables** with parameter \(p\) is negative binomial with parameter \((n, p)\).

- **Expectation of geometric random variable** with parameter \(p\) is \(1/p\).

- **Expectation of binomial random variable** with parameters \((n, p)\) is \(np\).

- **Variance of binomial random variable** with parameters \((n, p)\) is \(np(1 - p) = npq\).
Continuous random variable properties derivable from coin toss intuition

- **Sum of n independent exponential random variables** each with parameter λ is gamma with parameters (n, λ).

- Memoryless properties:
 Given that exponential random variable X is greater than $T > 0$, the conditional law of $X - T$ is the same as the original law of X.

- Write $p = \lambda/n$.
 - Poisson random variable expectation is $\lim_{n \to \infty} np = \lim_{n \to \infty} n\lambda/n = \lambda$.
 - Variance is $\lim_{n \to \infty} np(1-p) = \lim_{n \to \infty} n(1-\lambda/n)\lambda/n = \lambda$.

- Sum of λ_1 Poisson and independent λ_2 Poisson is a $\lambda_1 + \lambda_2$ Poisson.

- Times between successive events in λ Poisson process are independent exponentials with parameter λ.

- Minimum of independent exponentials with parameters λ_1 and λ_2 is itself exponential with parameter $\lambda_1 + \lambda_2$.
Continuous random variable properties derivable from coin toss intuition

- **Sum of n independent exponential random variables** each with parameter λ is gamma with parameters (n, λ).

- **Memoryless properties**: given that exponential random variable X is greater than $T > 0$, the conditional law of $X - T$ is the same as the original law of X.

▶ Write $p = \lambda/n$. Poisson random variable expectation is $\lim_{n \to \infty} np = \lim_{n \to \infty} n\lambda = \lambda$.

▶ Variance is $\lim_{n \to \infty} np(1 - p) = \lim_{n \to \infty} n(1 - \lambda/n)\lambda/n = \lambda$.

▶ Sum of λ_1 Poisson and independent λ_2 Poisson is a $\lambda_1 + \lambda_2$ Poisson.

▶ Times between successive events in λ Poisson process are independent exponentials with parameter λ.

▶ Minimum of independent exponentials with parameters λ_1 and λ_2 is itself exponential with parameter $\lambda_1 + \lambda_2$.
Continuous random variable properties derivable from coin toss intuition

- **Sum of n independent exponential random variables** each with parameter λ is gamma with parameters (n, λ).

- **Memoryless properties**: given that exponential random variable X is greater than $T > 0$, the conditional law of $X - T$ is the same as the original law of X.

- Write $p = \frac{\lambda}{n}$. **Poisson random variable expectation** is
 \[
 \lim_{n \to \infty} np = \lim_{n \to \infty} n\frac{\lambda}{n} = \lambda. \]
 Variance is
 \[
 \lim_{n \to \infty} np(1 - p) = \lim_{n \to \infty} n(1 - \frac{\lambda}{n})\frac{\lambda}{n} = \lambda.
 \]
Continuous random variable properties derivable from coin toss intuition

- **Sum of n independent exponential random variables** each with parameter λ is gamma with parameters (n, λ).

- **Memoryless properties**: given that exponential random variable X is greater than $T > 0$, the conditional law of $X - T$ is the same as the original law of X.

- Write $p = \lambda/n$. **Poisson random variable expectation** is $\lim_{n \to \infty} np = \lim_{n \to \infty} n \frac{\lambda}{n} = \lambda$. **Variance** is $\lim_{n \to \infty} np(1 - p) = \lim_{n \to \infty} n(1 - \lambda/n)\lambda/n = \lambda$.

- **Sum of λ_1 Poisson and independent λ_2 Poisson** is a $\lambda_1 + \lambda_2$ Poisson.
Continuous random variable properties derivable from coin toss intuition

- **Sum of** n **independent exponential random variables** each with parameter λ is gamma with parameters (n, λ).

- **Memoryless properties**: given that exponential random variable X is greater than $T > 0$, the conditional law of $X - T$ is the same as the original law of X.

- Write $p = \lambda/n$. **Poisson random variable expectation** is $\lim_{n \to \infty} np = \lim_{n \to \infty} n \cdot \frac{\lambda}{n} = \lambda$. **Variance** is $\lim_{n \to \infty} np(1 - p) = \lim_{n \to \infty} n(1 - \lambda/n)\lambda/n = \lambda$.

- **Sum of** λ_1 **Poisson and independent** λ_2 **Poisson** is a $\lambda_1 + \lambda_2$ **Poisson**.

- **Times between successive events** in λ **Poisson process** are independent exponentials with parameter λ.
Continuous random variable properties derivable from coin toss intuition

- **Sum of n independent exponential random variables** each with parameter λ is gamma with parameters (n, λ).

- **Memoryless properties:** given that exponential random variable X is greater than $T > 0$, the conditional law of $X - T$ is the same as the original law of X.

- Write $p = \lambda/n$. **Poisson random variable expectation** is $\lim_{n \to \infty} np = \lim_{n \to \infty} n\frac{\lambda}{n} = \lambda$. **Variance** is $\lim_{n \to \infty} np(1 - p) = \lim_{n \to \infty} n(1 - \lambda/n)\lambda/n = \lambda$.

- **Sum of λ_1 Poisson and independent λ_2 Poisson** is a $\lambda_1 + \lambda_2$ Poisson.

- **Times between successive events** in λ Poisson process are independent exponentials with parameter λ.

- **Minimum of independent exponentials** with parameters λ_1 and λ_2 is itself exponential with parameter $\lambda_1 + \lambda_2$.
DeMoivre-Laplace Limit Theorem

DeMoivre-Laplace limit theorem (special case of central limit theorem):

\[
\lim_{n \to \infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).
\]
DeMoivre-Laplace limit theorem (special case of central limit theorem):

$$\lim_{n \to \infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

This is $$\Phi(b) - \Phi(a) = P\{a \leq X \leq b\}$$ when $$X$$ is a standard normal random variable.
Toss a million fair coins. Approximate the probability that I get more than 501,000 heads.
Problems

▶ Toss a million fair coins. Approximate the probability that I get more than 501,000 heads.

▶ Answer: well, $\sqrt{npq} = \sqrt{10^6 \times .5 \times .5} = 500$. So we’re asking for probability to be over two SDs above mean. This is approximately $1 - \Phi(2) = \Phi(-2)$.
Toss a million fair coins. Approximate the probability that I get more than 501,000 heads.

Answer: well, \(\sqrt{npq} = \sqrt{10^6 \times 0.5 \times 0.5} = 500 \). So we’re asking for probability to be over two SDs above mean. This is approximately \(1 - \Phi(2) = \Phi(-2) \).

Roll 60000 dice. Expect to see 10000 sixes. What’s the probability to see more than 9800?
▶ Toss a million fair coins. Approximate the probability that I get more than 501,000 heads.

▶ Answer: well, $\sqrt{npq} = \sqrt{10^6 \times .5 \times .5} = 500$. So we’re asking for probability to be over two SDs above mean. This is approximately $1 - \Phi(2) = \Phi(-2)$.

▶ Roll 60000 dice. Expect to see 10000 sixes. What’s the probability to see more than 9800?

▶ Here $\sqrt{npq} = \sqrt{60000 \times \frac{1}{6} \times \frac{5}{6}} \approx 91.28$.
Problems

- Toss a million fair coins. Approximate the probability that I get more than 501,000 heads.

 Answer: well, \(\sqrt{npq} = \sqrt{10^6 \times .5 \times .5} = 500 \). So we’re asking for probability to be over two SDs above mean. This is approximately \(1 - \Phi(2) = \Phi(-2) \).

- Roll 60000 dice. Expect to see 10000 sixes. What’s the probability to see more than 9800?

 Here \(\sqrt{npq} = \sqrt{60000 \times \frac{1}{6} \times \frac{5}{6}} \approx 91.28 \).

 And \(200/91.28 \approx 2.19 \). **Answer** is about \(1 - \Phi(-2.19) \).
Say \(X \) is a (standard) **normal random variable** if
\[f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]
Properties of normal random variables

- Say X is a (standard) **normal random variable** if
 \[f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]
- Mean zero and variance one.

- Function $\Phi(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} \, dx$ can't be computed explicitly.
- Values: $\Phi(-3) \approx 0.0013$, $\Phi(-2) \approx 0.023$ and $\Phi(-1) \approx 0.159$.
- Rule of thumb: “two thirds of time within one SD of mean, 95 percent of time within 2 SDs of mean.”
Properties of normal random variables

- Say X is a (standard) **normal random variable** if
 \[f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]
- Mean zero and variance one.
- The random variable $Y = \sigma X + \mu$ has variance σ^2 and expectation μ.

- Function $\Phi(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} \, dx$ can't be computed explicitly.

- Values: $\Phi(-3) \approx 0.0013$, $\Phi(-2) \approx 0.023$ and $\Phi(-1) \approx 0.159$.

- Rule of thumb: “two thirds of time within one SD of mean, 95 percent of time within 2 SDs of mean.”
Say X is a (standard) **normal random variable** if
\[f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]

Mean zero and variance one.

The random variable $Y = \sigma X + \mu$ has variance σ^2 and expectation μ.

Y is said to be normal with parameters μ and σ^2. Its density function is
\[f_Y(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}. \]
Say \(X \) is a (standard) **normal random variable** if
\[
f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.
\]

Mean zero and variance one.

The random variable \(Y = \sigma X + \mu \) has variance \(\sigma^2 \) and expectation \(\mu \).

\(Y \) is said to be normal with parameters \(\mu \) and \(\sigma^2 \). Its density function is
\[
f_Y(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}.
\]

Function \(\Phi(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} dx \) can’t be computed explicitly.

Values: \(\Phi(-3) \approx 0.0013, \Phi(-2) \approx 0.023 \) and \(\Phi(-1) \approx 0.159 \).

Rule of thumb: “two thirds of time within one SD of mean, 95 percent of time within 2 SDs of mean.”
Say X is a (standard) **normal random variable** if
\[f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]

Mean zero and variance one.

The random variable $Y = \sigma X + \mu$ has variance σ^2 and expectation μ.

Y is said to be normal with parameters μ and σ^2. Its density function is
\[f_Y(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}. \]

Function $\Phi(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} dx$ can’t be computed explicitly.

Values: $\Phi(-3) \approx .0013$, $\Phi(-2) \approx .023$ and $\Phi(-1) \approx .159$.

"Rule of thumb: “two thirds of time within one SD of mean, 95 percent of time within 2 SDs of mean.”
Properties of normal random variables

- Say X is a (standard) **normal random variable** if
 $$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$$

- Mean zero and variance one.

- The random variable $Y = \sigma X + \mu$ has variance σ^2 and expectation μ.

- Y is said to be normal with parameters μ and σ^2. Its density function is
 $$f_Y(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}.$$

- Function $\Phi(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} dx$ can’t be computed explicitly.

- Values: $\Phi(-3) \approx .0013$, $\Phi(-2) \approx .023$ and $\Phi(-1) \approx .159$.

- Rule of thumb: “two thirds of time within one SD of mean, 95 percent of time within 2 SDs of mean.”
Say X is an **exponential random variable** of parameter λ when its probability distribution function is $f(x) = \lambda e^{-\lambda x}$ for $x \geq 0$ (and $f(x) = 0$ if $x < 0$).
- Say X is an **exponential random variable of parameter** λ when its probability distribution function is $f(x) = \lambda e^{-\lambda x}$ for $x \geq 0$ (and $f(x) = 0$ if $x < 0$).

- For $a > 0$ have

$$F_X(a) = \int_0^a f(x)dx = \int_0^a \lambda e^{-\lambda x}dx = -e^{-\lambda x}\bigg|_0^a = 1 - e^{-\lambda a}.$$
Say X is an exponential random variable of parameter λ when its probability distribution function is $f(x) = \lambda e^{-\lambda x}$ for $x \geq 0$ (and $f(x) = 0$ if $x < 0$).

For $a > 0$ have

$$F_X(a) = \int_0^a f(x)dx = \int_0^a \lambda e^{-\lambda x} dx = -e^{-\lambda x}\bigg|_{0}^{a} = 1 - e^{-\lambda a}.$$

Thus $P\{X < a\} = 1 - e^{-\lambda a}$ and $P\{X > a\} = e^{-\lambda a}$.

Formula $P\{X > a\} = e^{-\lambda a}$ is very important in practice.

Repeated integration by parts gives $E[X^n] = \frac{n!}{\lambda^n}$.

If $\lambda = 1$, then $E[X^n] = n!$. Value $\Gamma(n) := E[X^{n-1}]$ defined for real $n > 0$ and $\Gamma(n) = (n-1)!$.

Properties of exponential random variables
Say X is an **exponential random variable of parameter** λ when its probability distribution function is $f(x) = \lambda e^{-\lambda x}$ for $x \geq 0$ (and $f(x) = 0$ if $x < 0$).

For $a > 0$ have

$$F_X(a) = \int_0^a f(x)dx = \int_0^a \lambda e^{-\lambda x} dx = -e^{-\lambda x} \bigg|_0^a = 1 - e^{-\lambda a}.$$

Thus $P\{X < a\} = 1 - e^{-\lambda a}$ and $P\{X > a\} = e^{-\lambda a}$.

Formula $P\{X > a\} = e^{-\lambda a}$ is very important in practice.
Say X is an exponential random variable of parameter λ when its probability distribution function is $f(x) = \lambda e^{-\lambda x}$ for $x \geq 0$ (and $f(x) = 0$ if $x < 0$).

For $a > 0$ have

$$F_X(a) = \int_0^a f(x)dx = \int_0^a \lambda e^{-\lambda x} dx = -e^{-\lambda x} \bigg|_0^a = 1 - e^{-\lambda a}.$$

Thus $P\{X < a\} = 1 - e^{-\lambda a}$ and $P\{X > a\} = e^{-\lambda a}$.

Formula $P\{X > a\} = e^{-\lambda a}$ is very important in practice.

Repeated integration by parts gives $E[X^n] = n!/\lambda^n$.

\[\]
Properties of exponential random variables

- Say \(X\) is an **exponential random variable of parameter** \(\lambda\) when its probability distribution function is \(f(x) = \lambda e^{-\lambda x}\) for \(x \geq 0\) (and \(f(x) = 0\) if \(x < 0\)).
- For \(a > 0\) have
 \[
 F_X(a) = \int_0^a f(x)\,dx = \int_0^a \lambda e^{-\lambda x}\,dx = -e^{-\lambda x}\bigg|_0^a = 1 - e^{-\lambda a}.
 \]
- Thus \(P\{X < a\} = 1 - e^{-\lambda a}\) and \(P\{X > a\} = e^{-\lambda a}\).
- Formula \(P\{X > a\} = e^{-\lambda a}\) is very important in practice.
- Repeated integration by parts gives \(E[X^n] = n!/\lambda^n\).
- If \(\lambda = 1\), then \(E[X^n] = n!\). Value \(\Gamma(n) := E[X^{n-1}]\) defined for real \(n > 0\) and \(\Gamma(n) = (n-1)!\).
Say that random variable X has gamma distribution with parameters (α, λ) if

$$f_X(x) = \begin{cases} \frac{(\lambda x)^{\alpha-1}e^{-\lambda x}}{\Gamma(\alpha)} & x \geq 0 \\ 0 & x < 0 \end{cases}$$
Say that random variable X has gamma distribution with parameters (α, λ) if $f_X(x) = \begin{cases} \frac{(\lambda x)^{\alpha-1}e^{-\lambda x}}{\Gamma(\alpha)} & x \geq 0 \\ 0 & x < 0 \end{cases}$.

Same as exponential distribution when $\alpha = 1$. Otherwise, multiply by $x^{\alpha-1}$ and divide by $\Gamma(\alpha)$. The fact that $\Gamma(\alpha)$ is what you need to divide by to make the total integral one just follows from the definition of Γ.
Say that random variable X has gamma distribution with parameters (α, λ) if $f_X(x) = \begin{cases} \frac{(\lambda x)^{\alpha-1}e^{-\lambda x}}{\Gamma(\alpha)} & x \geq 0 \\ 0 & x < 0 \end{cases}$.

Same as exponential distribution when $\alpha = 1$. Otherwise, multiply by $x^{\alpha-1}$ and divide by $\Gamma(\alpha)$. The fact that $\Gamma(\alpha)$ is what you need to divide by to make the total integral one just follows from the definition of Γ.

Waiting time interpretation makes sense only for integer α, but distribution is defined for general positive α.

Defining Γ distribution
Continuous random variables

Problems motivated by coin tossing

Random variable properties
Outline

Continuous random variables

Problems motivated by coin tossing

Random variable properties
Properties of uniform random variables

Suppose \(X \) is a random variable with probability density function

\[
f(x) = \begin{cases}
\frac{1}{\beta - \alpha} & x \in [\alpha, \beta] \\
0 & x \notin [\alpha, \beta].
\end{cases}
\]

Then \(\mathbb{E}[X] = \frac{\alpha + \beta}{2} \).

And \(\text{Var}[X] = \text{Var}[(\beta - \alpha)Y + \alpha] = (\beta - \alpha)^2 \text{Var}[Y] = \frac{(\beta - \alpha)^2}{12}. \)
Suppose X is a random variable with probability density function $f(x) = \begin{cases} \frac{1}{\beta - \alpha} & x \in [\alpha, \beta] \\ 0 & x \notin [\alpha, \beta]. \end{cases}$

Then $E[X] = \frac{\alpha + \beta}{2}$.
Properties of uniform random variables

- Suppose X is a random variable with probability density function $f(x) = \begin{cases} \frac{1}{\beta-\alpha} & x \in [\alpha, \beta] \\ 0 & x \notin [\alpha, \beta]. \end{cases}$

- Then $E[X] = \frac{\alpha+\beta}{2}$.

- And $\text{Var}[X] = \text{Var}[(\beta - \alpha)Y + \alpha] = \text{Var}[(\beta - \alpha)Y] = (\beta - \alpha)^2 \text{Var}[Y] = (\beta - \alpha)^2 / 12.$
Suppose $P\{X \leq a\} = F_X(a)$ is known for all a. Write $Y = X^3$. What is $P\{Y \leq 27\}$?
Suppose $P\{X \leq a\} = F_X(a)$ is known for all a. Write $Y = X^3$. What is $P\{Y \leq 27\}$?

Answer: note that $Y \leq 27$ if and only if $X \leq 3$. Hence $P\{Y \leq 27\} = P\{X \leq 3\} = F_X(3)$.
Suppose $P\{X \leq a\} = F_X(a)$ is known for all a. Write $Y = X^3$. What is $P\{Y \leq 27\}$?

Answer: note that $Y \leq 27$ if and only if $X \leq 3$. Hence $P\{Y \leq 27\} = P\{X \leq 3\} = F_X(3)$.

Generally $F_Y(a) = P\{Y \leq a\} = P\{X \leq a^{1/3}\} = F_X(a^{1/3})$.
Distribution of function of random variable

Suppose \(P\{X \leq a\} = F_X(a) \) is known for all \(a \). Write \(Y = X^3 \). What is \(P\{Y \leq 27\} \)?

Answer: note that \(Y \leq 27 \) if and only if \(X \leq 3 \). Hence \(P\{Y \leq 27\} = P\{X \leq 3\} = F_X(3) \).

Generally \(F_Y(a) = P\{Y \leq a\} = P\{X \leq a^{1/3}\} = F_X(a^{1/3}) \).

This is a general principle. If \(X \) is a continuous random variable and \(g \) is a strictly increasing function of \(x \) and \(Y = g(X) \), then \(F_Y(a) = F_X(g^{-1}(a)) \).
If X and Y assume values in $\{1, 2, \ldots, n\}$ then we can view $A_{i,j} = P\{X = i, Y = j\}$ as the entries of an $n \times n$ matrix.
If X and Y assume values in $\{1, 2, \ldots, n\}$ then we can view $A_{i,j} = P\{X = i, Y = j\}$ as the entries of an $n \times n$ matrix.

Let’s say I don’t care about Y. I just want to know $P\{X = i\}$. How do I figure that out from the matrix?
If X and Y assume values in \{1, 2, \ldots, n\} then we can view $A_{i,j} = P\{X = i, Y = j\}$ as the entries of an $n \times n$ matrix.

Let’s say I don’t care about Y. I just want to know $P\{X = i\}$. How do I figure that out from the matrix?

Answer: $P\{X = i\} = \sum_{j=1}^{n} A_{i,j}$.
If X and Y assume values in $\{1, 2, \ldots, n\}$ then we can view $A_{i,j} = P\{X = i, Y = j\}$ as the entries of an $n \times n$ matrix.

Let’s say I don’t care about Y. I just want to know $P\{X = i\}$. How do I figure that out from the matrix?

Answer: $P\{X = i\} = \sum_{j=1}^{n} A_{i,j}$.

Similarly, $P\{Y = j\} = \sum_{i=1}^{n} A_{i,j}$.
If X and Y assume values in $\{1, 2, \ldots, n\}$ then we can view $A_{i,j} = P\{X = i, Y = j\}$ as the entries of an $n \times n$ matrix.

Let’s say I don’t care about Y. I just want to know $P\{X = i\}$. How do I figure that out from the matrix?

Answer: $P\{X = i\} = \sum_{j=1}^{n} A_{i,j}$.

Similarly, $P\{Y = j\} = \sum_{i=1}^{n} A_{i,j}$.

In other words, the probability mass functions for X and Y are the row and columns sums of $A_{i,j}$.
If X and Y assume values in $\{1, 2, \ldots, n\}$ then we can view $A_{i,j} = P\{X = i, Y = j\}$ as the entries of an $n \times n$ matrix.

Let’s say I don’t care about Y. I just want to know $P\{X = i\}$. How do I figure that out from the matrix?

Answer: $P\{X = i\} = \sum_{j=1}^{n} A_{i,j}$.

Similarly, $P\{Y = j\} = \sum_{i=1}^{n} A_{i,j}$.

In other words, the probability mass functions for X and Y are the row and columns sums of $A_{i,j}$.

Given the joint distribution of X and Y, we sometimes call distribution of X (ignoring Y) and distribution of Y (ignoring X) the **marginal** distributions.
If X and Y assume values in $\{1, 2, \ldots, n\}$ then we can view $A_{i,j} = P\{X = i, Y = j\}$ as the entries of an $n \times n$ matrix.

Let’s say I don’t care about Y. I just want to know $P\{X = i\}$. How do I figure that out from the matrix?

Answer: $P\{X = i\} = \sum_{j=1}^{n} A_{i,j}$.

Similarly, $P\{Y = j\} = \sum_{i=1}^{n} A_{i,j}$.

In other words, the probability mass functions for X and Y are the row and columns sums of $A_{i,j}$.

Given the joint distribution of X and Y, we sometimes call distribution of X (ignoring Y) and distribution of Y (ignoring X) the **marginal** distributions.

In general, when X and Y are jointly defined discrete random variables, we write $p(x, y) = p_{X,Y}(x, y) = P\{X = x, Y = y\}$.
Given random variables X and Y, define
\[F(a, b) = P\{X \leq a, Y \leq b\}. \]
Given random variables X and Y, define $F(a, b) = P\{X \leq a, Y \leq b\}$.

The region $\{(x, y) : x \leq a, y \leq b\}$ is the lower left “quadrant” centered at (a, b).

Refer to $F_X(a) = P\{X \leq a\}$ and $F_Y(b) = P\{Y \leq b\}$ as marginal cumulative distribution functions.
Given random variables X and Y, define $F(a, b) = P\{X \leq a, Y \leq b\}$.

The region $\{(x, y) : x \leq a, y \leq b\}$ is the lower left “quadrant” centered at (a, b).

Refer to $F_X(a) = P\{X \leq a\}$ and $F_Y(b) = P\{Y \leq b\}$ as **marginal** cumulative distribution functions.
Joint distribution functions: continuous random variables

- Given random variables X and Y, define $F(a, b) = P\{X \leq a, Y \leq b\}$.
- The region $\{(x, y) : x \leq a, y \leq b\}$ is the lower left “quadrant” centered at (a, b).
- Refer to $F_X(a) = P\{X \leq a\}$ and $F_Y(b) = P\{Y \leq b\}$ as **marginal** cumulative distribution functions.
- Question: if I tell you the two parameter function F, can you use it to determine the marginals F_X and F_Y?
Given random variables X and Y, define $F(a, b) = P\{X \leq a, Y \leq b\}$. The region $\{(x, y) : x \leq a, y \leq b\}$ is the lower left “quadrant” centered at (a, b). Refer to $F_X(a) = P\{X \leq a\}$ and $F_Y(b) = P\{Y \leq b\}$ as **marginal** cumulative distribution functions.

Question: if I tell you the two parameter function F, can you use it to determine the marginals F_X and F_Y?

Answer: Yes. $F_X(a) = \lim_{b \to \infty} F(a, b)$ and $F_Y(b) = \lim_{a \to \infty} F(a, b)$.

Density: $f(x, y) = \frac{\partial}{\partial x} \frac{\partial}{\partial y} F(x, y)$.

Given random variables X and Y, define $F(a, b) = P\{X \leq a, Y \leq b\}$.

The region $\{(x, y) : x \leq a, y \leq b\}$ is the lower left “quadrant” centered at (a, b).

Refer to $F_X(a) = P\{X \leq a\}$ and $F_Y(b) = P\{Y \leq b\}$ as **marginal** cumulative distribution functions.

Question: if I tell you the two parameter function F, can you use it to determine the marginals F_X and F_Y?

Answer: Yes. $F_X(a) = \lim_{b \to \infty} F(a, b)$ and $F_Y(b) = \lim_{a \to \infty} F(a, b)$.

Density: $f(x, y) = \frac{\partial}{\partial x} \frac{\partial}{\partial y} F(x, y)$.
We say X and Y are independent if for any two (measurable) sets A and B of real numbers we have

$$P\{X \in A, Y \in B\} = P\{X \in A\}P\{Y \in B\}.$$
We say X and Y are independent if for any two (measurable) sets A and B of real numbers we have

$$P\{X \in A, Y \in B\} = P\{X \in A\} P\{Y \in B\}.$$

When X and Y are discrete random variables, they are independent if $P\{X = x, Y = y\} = P\{X = x\} P\{Y = y\}$ for all x and y for which $P\{X = x\}$ and $P\{Y = y\}$ are non-zero.
We say X and Y are independent if for any two (measurable) sets A and B of real numbers we have

$$P\{X \in A, Y \in B\} = P\{X \in A\}P\{Y \in B\}.$$

When X and Y are discrete random variables, they are independent if

$$P\{X = x, Y = y\} = P\{X = x\}P\{Y = y\}$$

for all x and y for which $P\{X = x\}$ and $P\{Y = y\}$ are non-zero.

When X and Y are continuous, they are independent if

$$f(x, y) = f_X(x)f_Y(y).$$
Say we have independent random variables X and Y and we know their density functions f_X and f_Y.

This is the integral over \{$(x, y) : x + y \leq a$\} of $f(x, y) = f_X(x)f_Y(y)$. Thus,

$$P\{X + Y \leq a\} = \int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_X(x)f_Y(y) \, dx \, dy = \int_{-\infty}^{\infty} F_X(a-y)f_Y(y) \, dy.$$

Differentiating both sides gives

$$f_X + Y(a) = \frac{d}{da} \int_{-\infty}^{\infty} F_X(a-y)f_Y(y) \, dy = \int_{-\infty}^{\infty} f_X(a-y)f_Y(y) \, dy.$$

Latter formula makes some intuitive sense. We're integrating over the set of x, y pairs that add up to a.

Say we have independent random variables X and Y and we know their density functions f_X and f_Y.

Now let’s try to find $F_{X+Y}(a) = P\{X + Y \leq a\}$.

Differentiating both sides gives $f_{X+Y}(a) = \frac{d}{da} \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$.

Latter formula makes some intuitive sense. We’re integrating over the set of x, y pairs that add up to a.
Say we have independent random variables X and Y and we know their density functions f_X and f_Y. Now let's try to find $F_{X+Y}(a) = P\{X + Y \leq a\}$. This is the integral over $\{(x, y) : x + y \leq a\}$ of $f(x, y) = f_X(x)f_Y(y)$. Thus,
Summing two random variables

- Say we have independent random variables X and Y and we know their density functions f_X and f_Y.
- Now let’s try to find $F_{X+Y}(a) = P\{X + Y \leq a\}$.
- This is the integral over $\{(x, y) : x + y \leq a\}$ of $f(x, y) = f_X(x)f_Y(y)$. Thus,

$$P\{X + Y \leq a\} = \int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_X(x)f_Y(y)\,dx\,dy$$

$$= \int_{-\infty}^{\infty} F_X(a - y)f_Y(y)\,dy.$$
Say we have independent random variables X and Y and we know their density functions f_X and f_Y.

Now let’s try to find $F_{X+Y}(a) = P\{X + Y \leq a\}$.

This is the integral over $\{(x, y) : x + y \leq a\}$ of $f(x, y) = f_X(x)f_Y(y)$. Thus,

$$P\{X + Y \leq a\} = \int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_X(x)f_Y(y)\,dx\,dy$$

$$= \int_{-\infty}^{\infty} F_X(a-y)f_Y(y)\,dy.$$

Differentiating both sides gives

$$f_{X+Y}(a) = \frac{d}{da} \int_{-\infty}^{\infty} F_X(a-y)f_Y(y)\,dy = \int_{-\infty}^{\infty} f_X(a-y)f_Y(y)\,dy.$$
Summing two random variables

▶ Say we have independent random variables X and Y and we know their density functions f_X and f_Y.

▶ Now let’s try to find $F_{X+Y}(a) = P\{X + Y \leq a\}$.

▶ This is the integral over $\{(x, y) : x + y \leq a\}$ of $f(x, y) = f_X(x)f_Y(y)$. Thus,

$$P\{X + Y \leq a\} = \int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_X(x)f_Y(y) \, dx \, dy$$

$$= \int_{-\infty}^{\infty} F_X(a-y)f_Y(y) \, dy.$$

▶ Differentiating both sides gives

$$f_{X+Y}(a) = \frac{d}{da} \int_{-\infty}^{\infty} F_X(a-y)f_Y(y) \, dy = \int_{-\infty}^{\infty} f_X(a-y)f_Y(y) \, dy.$$

▶ Latter formula makes some intuitive sense. We’re integrating over the set of x, y pairs that add up to a.
Let’s say X and Y have joint probability density function $f(x, y)$.
Conditional distributions

- Let’s say X and Y have joint probability density function $f(x, y)$.
- We can define the conditional probability density of X given that $Y = y$ by $f_{X|Y=y}(x) = \frac{f(x, y)}{f_Y(y)}$.

Conditional distributions

- Let’s say X and Y have joint probability density function $f(x, y)$.
- We can define the conditional probability density of X given that $Y = y$ by $f_{X|Y=y}(x) = \frac{f(x, y)}{f_Y(y)}$.
- This amounts to restricting $f(x, y)$ to the line corresponding to the given y value (and dividing by the constant that makes the integral along that line equal to 1).
Suppose I choose n random variables X_1, X_2, \ldots, X_n uniformly at random on $[0, 1]$, independently of each other.
Maxima: pick five job candidates at random, choose best

- Suppose I choose \(n \) random variables \(X_1, X_2, \ldots, X_n \) uniformly at random on \([0, 1] \), independently of each other.
- The \(n \)-tuple \((X_1, X_2, \ldots, X_n)\) has a constant density function on the \(n \)-dimensional cube \([0, 1]^n\).
Suppose I choose n random variables X_1, X_2, \ldots, X_n uniformly at random on $[0, 1]$, independently of each other.

The n-tuple (X_1, X_2, \ldots, X_n) has a constant density function on the n-dimensional cube $[0, 1]^n$.

What is the probability that the largest of the X_i is less than a?
Suppose I choose n random variables X_1, X_2, \ldots, X_n uniformly at random on $[0, 1]$, independently of each other.

The n-tuple (X_1, X_2, \ldots, X_n) has a constant density function on the n-dimensional cube $[0, 1]^n$.

What is the probability that the largest of the X_i is less than a?

ANSWER: a^n.

Suppose I choose n random variables X_1, X_2, \ldots, X_n uniformly at random on $[0, 1]$, independently of each other.

The n-tuple (X_1, X_2, \ldots, X_n) has a constant density function on the n-dimensional cube $[0, 1]^n$.

What is the probability that the largest of the X_i is less than a?

ANSWER: a^n.

So if $X = \max\{X_1, \ldots, X_n\}$, then what is the probability density function of X?
Suppose I choose n random variables X_1, X_2, \ldots, X_n uniformly at random on $[0, 1]$, independently of each other.

The n-tuple (X_1, X_2, \ldots, X_n) has a constant density function on the n-dimensional cube $[0, 1]^n$.

What is the probability that the largest of the X_i is less than a?

ANSWER: a^n.

So if $X = \max\{X_1, \ldots, X_n\}$, then what is the probability density function of X?

Answer: $F_X(a) = \begin{cases}
0 & a < 0 \\
 a^n & a \in [0, 1]. \quad \text{And} \\
1 & a > 1
\end{cases}$

$f_X(a) = F'_X(a) = na^{n-1}$.
Consider i.i.d random variables X_1, X_2, \ldots, X_n with continuous probability density f.
General order statistics

- Consider i.i.d random variables X_1, X_2, \ldots, X_n with continuous probability density f.
- Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by sorting the X_j.

\[f(x_1, x_2, \ldots, x_n) = \frac{n!}{\prod_{i=1}^{n} f(x_i)} \text{ if } x_1 < x_2 \ldots < x_n, \text{ zero otherwise.} \]

Let $\sigma : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, n\}$ be the permutation such that $X_j = Y_{\sigma(j)}$.

- Are σ and the vector (Y_1, \ldots, Y_n) independent of each other?
 - Yes.
Consider i.i.d random variables \(X_1, X_2, \ldots, X_n \) with continuous probability density \(f \).

Let \(Y_1 < Y_2 < Y_3 \ldots < Y_n \) be list obtained by sorting the \(X_j \).

In particular, \(Y_1 = \min\{X_1, \ldots, X_n\} \) and \(Y_n = \max\{X_1, \ldots, X_n\} \) is the maximum.

What is the joint probability density of the \(Y_i \)?

Answer:

\[
f(x_1, x_2, \ldots, x_n) = \frac{n!}{\prod_{i=1}^{n} f(x_i)} \text{ if } x_1 < x_2 \ldots < x_n, \text{ zero otherwise.}
\]

Let \(\sigma: \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, n\} \) be the permutation such that \(X_j = Y_{\sigma(j)} \).

Are \(\sigma \) and the vector \((Y_1, \ldots, Y_n) \) independent of each other?

Yes.
Consider i.i.d random variables X_1, X_2, \ldots, X_n with continuous probability density f.

Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by sorting the X_j.

In particular, $Y_1 = \min\{X_1, \ldots, X_n\}$ and $Y_n = \max\{X_1, \ldots, X_n\}$ is the maximum.

What is the joint probability density of the Y_i?
Consider i.i.d random variables X_1, X_2, \ldots, X_n with continuous probability density f.

Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by sorting the X_j.

In particular, $Y_1 = \min\{X_1, \ldots, X_n\}$ and $Y_n = \max\{X_1, \ldots, X_n\}$ is the maximum.

What is the joint probability density of the Y_i?

Answer: $f(x_1, x_2, \ldots, x_n) = n! \prod_{i=1}^{n} f(x_i)$ if $x_1 < x_2 \ldots < x_n$, zero otherwise.
Consider i.i.d random variables X_1, X_2, \ldots, X_n with continuous probability density f.

Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by sorting the X_j.

In particular, $Y_1 = \min\{X_1, \ldots, X_n\}$ and $Y_n = \max\{X_1, \ldots, X_n\}$ is the maximum.

What is the joint probability density of the Y_i?

Answer: $f(x_1, x_2, \ldots, x_n) = n! \prod_{i=1}^{n} f(x_i)$ if $x_1 < x_2 \ldots < x_n$, zero otherwise.

Let $\sigma : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, n\}$ be the permutation such that $X_j = Y_{\sigma(j)}$.
General order statistics

- Consider i.i.d random variables X_1, X_2, \ldots, X_n with continuous probability density f.
- Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by sorting the X_j.
- In particular, $Y_1 = \min \{X_1, \ldots, X_n\}$ and $Y_n = \max \{X_1, \ldots, X_n\}$ is the maximum.
- What is the joint probability density of the Y_i?
- Answer: $f(x_1, x_2, \ldots, x_n) = n! \prod_{i=1}^{n} f(x_i)$ if $x_1 < x_2 \ldots < x_n$, zero otherwise.
- Let $\sigma : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, n\}$ be the permutation such that $X_j = Y_{\sigma (j)}$
- Are σ and the vector (Y_1, \ldots, Y_n) independent of each other?
Consider i.i.d random variables X_1, X_2, \ldots, X_n with continuous
probability density f.

Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by sorting the X_j.

In particular, $Y_1 = \min\{X_1, \ldots, X_n\}$ and $Y_n = \max\{X_1, \ldots, X_n\}$ is the maximum.

What is the joint probability density of the Y_i?

Answer: $f(x_1, x_2, \ldots, x_n) = n! \prod_{i=1}^{n} f(x_i)$ if $x_1 < x_2 \ldots < x_n$, zero otherwise.

Let $\sigma : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, n\}$ be the permutation such that $X_j = Y_{\sigma(j)}$.

Are σ and the vector (Y_1, \ldots, Y_n) independent of each other?

Yes.
Properties of expectation

Several properties we derived for discrete expectations continue to hold in the continuum.
Several properties we derived for discrete expectations continue to hold in the continuum.

If X is discrete with mass function $p(x)$ then

$$E[X] = \sum_x p(x)x.$$
Several properties we derived for discrete expectations continue to hold in the continuum.

If X is discrete with mass function $p(x)$ then

$$E[X] = \sum_x p(x)x.$$

Similarly, if X is continuous with density function $f(x)$ then

$$E[X] = \int f(x)xdx.$$
Properties of expectation

Several properties we derived for discrete expectations continue to hold in the continuum.

If X is discrete with mass function $p(x)$ then
$E[X] = \sum_x p(x)x$.

Similarly, if X is continuous with density function $f(x)$ then
$E[X] = \int f(x)x\,dx$.

If X is discrete with mass function $p(x)$ then
$E[g(x)] = \sum_x p(x)g(x)$.
Properties of expectation

- Several properties we derived for discrete expectations continue to hold in the continuum.
- If X is discrete with mass function $p(x)$ then
 $$E[X] = \sum_x p(x)x.$$
- Similarly, if X is continuous with density function $f(x)$ then
 $$E[X] = \int f(x)x \, dx.$$
- If X is discrete with mass function $p(x)$ then
 $$E[g(X)] = \sum_x p(x)g(x).$$
- Similarly, X if is continuous with density function $f(x)$ then
 $$E[g(X)] = \int f(x)g(x) \, dx.$$
Properties of expectation

- Several properties we derived for discrete expectations continue to hold in the continuum.

- If X is discrete with mass function $p(x)$ then
 \[E[X] = \sum_x p(x)x.\]

- Similarly, if X is continuous with density function $f(x)$ then
 \[E[X] = \int f(x)x\,dx.\]

- If X is discrete with mass function $p(x)$ then
 \[E[g(X)] = \sum_x p(x)g(x).\]

- Similarly, X if is continuous with density function $f(x)$ then
 \[E[g(X)] = \int f(x)g(x)\,dx.\]

- If X and Y have joint mass function $p(x, y)$ then
 \[E[g(X, Y)] = \sum_y \sum_x g(x, y)p(x, y).\]
Properties of expectation

- Several properties we derived for discrete expectations continue to hold in the continuum.

- If X is discrete with mass function $p(x)$ then

 $$E[X] = \sum_x p(x)x.$$

- Similarly, if X is continuous with density function $f(x)$ then

 $$E[X] = \int f(x)x\,dx.$$

- If X is discrete with mass function $p(x)$ then

 $$E[g(X)] = \sum_x p(x)g(x).$$

- Similarly, if X is continuous with density function $f(x)$ then

 $$E[g(X)] = \int f(x)g(x)\,dx.$$

- If X and Y have joint mass function $p(x, y)$ then

 $$E[g(X, Y)] = \sum_y \sum_x g(x, y)p(x, y).$$

- If X and Y have joint probability density function $f(x, y)$ then

 $$E[g(X, Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y)f(x, y)\,dx\,dy.$$
Properties of expectation

For both discrete and continuous random variables X and Y we have $E[X + Y] = E[X] + E[Y]$.

In both discrete and continuous settings, $E[aX] = aE[X]$ when a is a constant. And $E[\sum a_i X_i] = \sum a_i E[X_i]$.

But what about that delightful "area under $1 - F_X$" formula for the expectation?

When X is non-negative with probability one, do we always have $E[X] = \int_0^\infty P\{X > x\}$, in both discrete and continuous settings?

Define $g(y)$ so that $1 - F_X(g(y)) = y$. (Draw horizontal line at height y and look where it hits graph of $1 - F_X$.)

Choose Y uniformly on $[0, 1]$ and note that $g(Y)$ has the same probability distribution as X.

So $E[X] = E[g(Y)] = \int_0^1 g(y) dy$, which is indeed the area under the graph of $1 - F_X$.

Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X + Y] = E[X] + E[Y]$.
- In both discrete and continuous settings, $E[aX] = aE[X]$ when a is a constant. And $E[\sum a_i X_i] = \sum a_i E[X_i]$.
Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X + Y] = E[X] + E[Y]$.
- In both discrete and continuous settings, $E[aX] = aE[X]$ when a is a constant. And $E[\sum a_i X_i] = \sum a_i E[X_i]$.
- But what about that delightful “area under $1 - F_X$” formula for the expectation?
Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X + Y] = E[X] + E[Y]$.
- In both discrete and continuous settings, $E[aX] = aE[X]$ when a is a constant. And $E[\sum a_iX_i] = \sum a_iE[X_i]$.
- But what about that delightful “area under $1 - F_X$” formula for the expectation?
- When X is non-negative with probability one, do we always have $E[X] = \int_0^\infty P\{X > x\}$, in both discrete and continuous settings?
Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X + Y] = E[X] + E[Y]$.
- In both discrete and continuous settings, $E[aX] = aE[X]$ when a is a constant. And $E[\sum a_iX_i] = \sum a_iE[X_i]$.
- But what about that delightful “area under $1 - F_X$” formula for the expectation?
- When X is non-negative with probability one, do we always have $E[X] = \int_0^{\infty} P\{X > x\}$, in both discrete and continuous settings?
- Define $g(y)$ so that $1 - F_X(g(y)) = y$. (Draw horizontal line at height y and look where it hits graph of $1 - F_X$.)
Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X + Y] = E[X] + E[Y]$.
- In both discrete and continuous settings, $E[aX] = aE[X]$ when a is a constant. And $E[\sum a_iX_i] = \sum a_iE[X_i]$.
- But what about that delightful “area under $1 - F_X$” formula for the expectation?
- When X is non-negative with probability one, do we always have $E[X] = \int_0^\infty P\{X > x\}$, in both discrete and continuous settings?
- Define $g(y)$ so that $1 - F_X(g(y)) = y$. (Draw horizontal line at height y and look where it hits graph of $1 - F_X$.)
- Choose Y uniformly on $[0, 1]$ and note that $g(Y)$ has the same probability distribution as X.

Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X + Y] = E[X] + E[Y]$.
- In both discrete and continuous settings, $E[aX] = aE[X]$ when a is a constant. And $E[\sum a_iX_i] = \sum a_iE[X_i]$.
- But what about that delightful “area under $1 - F_X$” formula for the expectation?
- When X is non-negative with probability one, do we always have $E[X] = \int_0^\infty P\{X > x\}$, in both discrete and continuous settings?
- Define $g(y)$ so that $1 - F_X(g(y)) = y$. (Draw horizontal line at height y and look where it hits graph of $1 - F_X$.)
- Choose Y uniformly on $[0, 1]$ and note that $g(Y)$ has the same probability distribution as X.
- So $E[X] = E[g(Y)] = \int_0^1 g(y)dy$, which is indeed the area under the graph of $1 - F_X$.
A property of independence

If X and Y are independent then

$$E[g(X)h(Y)] = E[g(X)]E[h(Y)].$$
A property of independence

- If X and Y are independent then
 \[E[g(X)h(Y)] = E[g(X)]E[h(Y)]. \]
- Just write
 \[E[g(X)h(Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f(x, y)\,dx\,dy. \]
If X and Y are independent then

$$E[g(X)h(Y)] = E[g(X)]E[h(Y)].$$

Just write

$$E[g(X)h(Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f(x,y)\,dx\,dy.$$

Since $f(x, y) = f_X(x)f_Y(y)$ this factors as

$$\int_{-\infty}^{\infty} h(y)f_Y(y)\,dy \int_{-\infty}^{\infty} g(x)f_X(x)\,dx = E[h(Y)]E[g(X)].$$
Now define covariance of X and Y by
\[
\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])].
\]
Defining covariance and correlation

Now define covariance of X and Y by
\[\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])]. \]

Note: by definition $\text{Var}(X) = \text{Cov}(X, X)$.
Now define covariance of X and Y by
\[
\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])].
\]

Note: by definition $\text{Var}(X) = \text{Cov}(X, X)$.

Now define covariance of X and Y by
$$\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])].$$

Note: by definition $\text{Var}(X) = \text{Cov}(X, X)$.

If X and Y are independent then $\text{Cov}(X, Y) = 0$.
Now define covariance of X and Y by
$$\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])].$$

Note: by definition $\text{Var}(X) = \text{Cov}(X, X)$.

If X and Y are independent then $\text{Cov}(X, Y) = 0$.

Converse is not true.
Basic covariance facts

\[\text{Cov}(X, Y) = \text{Cov}(Y, X) \]
Basic covariance facts

- $\text{Cov}(X, Y) = \text{Cov}(Y, X)$
- $\text{Cov}(X, X) = \text{Var}(X)$
Basic covariance facts

- $\text{Cov}(X, Y) = \text{Cov}(Y, X)$
- $\text{Cov}(X, X) = \text{Var}(X)$
- $\text{Cov}(aX, Y) = a\text{Cov}(X, Y)$.
Basic covariance facts

- \(\text{Cov}(X, Y) = \text{Cov}(Y, X) \)
- \(\text{Cov}(X, X) = \text{Var}(X) \)
- \(\text{Cov}(aX, Y) = a\text{Cov}(X, Y) \)
- \(\text{Cov}(X_1 + X_2, Y) = \text{Cov}(X_1, Y) + \text{Cov}(X_2, Y) \)
Basic covariance facts

- \(\text{Cov}(X, Y) = \text{Cov}(Y, X) \)
- \(\text{Cov}(X, X) = \text{Var}(X) \)
- \(\text{Cov}(aX, Y) = a \text{Cov}(X, Y) \).
- \(\text{Cov}(X_1 + X_2, Y) = \text{Cov}(X_1, Y) + \text{Cov}(X_2, Y) \).
- **General statement of bilinearity of covariance:**

\[
\text{Cov}(\sum_{i=1}^{m} a_i X_i, \sum_{j=1}^{n} b_j Y_j) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j \text{Cov}(X_i, Y_j).
\]
Basic covariance facts

- \(\text{Cov}(X, Y) = \text{Cov}(Y, X) \)
- \(\text{Cov}(X, X) = \text{Var}(X) \)
- \(\text{Cov}(aX, Y) = a \text{Cov}(X, Y) \).
- \(\text{Cov}(X_1 + X_2, Y) = \text{Cov}(X_1, Y) + \text{Cov}(X_2, Y) \).
- **General statement of bilinearity of covariance:**

\[
\text{Cov} \left(\sum_{i=1}^{m} a_i X_i, \sum_{j=1}^{n} b_j Y_j \right) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j \text{Cov}(X_i, Y_j).
\]

- **Special case:**

\[
\text{Var} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} \text{Var}(X_i) + 2 \sum_{(i,j):i<j} \text{Cov}(X_i, X_j).
\]

Correlation doesn't care what units you use for X and Y. If $a > 0$ and $c > 0$ then $\rho(aX + b, cY + d) = \rho(X, Y)$.

Satisfies $-1 \leq \rho(X, Y) \leq 1$.

If a and b are positive constants and $a > 0$ then $\rho(aX + b, X) = 1$.

If a and b are positive constants and $a < 0$ then $\rho(aX + b, X) = -1$.

Defining correlation
Defining correlation

- Correlation of X and Y defined by
 \[
 \rho(X, Y) := \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}.
 \]

Correlation of X and Y defined by

$$
\rho(X, Y) := \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}.
$$

Correlation doesn’t care what units you use for X and Y. If $a > 0$ and $c > 0$ then $\rho(aX + b, cY + d) = \rho(X, Y)$.

Defining correlation

- **Correlation** of X and Y defined by

 $$\rho(X, Y) := \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}.$$

- Correlation doesn’t care what units you use for X and Y. If $a > 0$ and $c > 0$ then $\rho(aX + b, cY + d) = \rho(X, Y)$.
- Satisfies $-1 \leq \rho(X, Y) \leq 1$.

Correlation of X and Y defined by

$$
\rho(X, Y) := \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}.
$$

Correlation doesn’t care what units you use for X and Y. If $a > 0$ and $c > 0$ then $\rho(aX + b, cY + d) = \rho(X, Y)$.

Satisfies $-1 \leq \rho(X, Y) \leq 1$.

If a and b are positive constants and $a > 0$ then $\rho(aX + b, X) = 1$.

Defining correlation

Correlation of X and Y defined by

$$
\rho(X, Y) := \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}.
$$

Correlation doesn’t care what units you use for X and Y. If $a > 0$ and $c > 0$ then $\rho(aX + b, cY + d) = \rho(X, Y)$.

Satisfies $-1 \leq \rho(X, Y) \leq 1$.

If a and b are positive constants and $a > 0$ then $\rho(aX + b, X) = 1$.

If a and b are positive constants and $a < 0$ then $\rho(aX + b, X) = -1$.
It all starts with the definition of conditional probability:

\[P(A|B) = \frac{P(AB)}{P(B)} \]
It all starts with the definition of conditional probability:
\[P(A|B) = \frac{P(AB)}{P(B)}. \]

If \(X \) and \(Y \) are jointly discrete random variables, we can use this to define a probability mass function for \(X \) \textit{given} \(Y = y \).
Conditional probability distributions

- It all starts with the definition of conditional probability:
 \[P(A|B) = \frac{P(AB)}{P(B)} \].
- If \(X \) and \(Y \) are jointly discrete random variables, we can use this to define a probability mass function for \(X \) given \(Y = y \).
- That is, we write
 \[p_{X|Y}(x|y) = \frac{P(X = x|Y = y)}{p_Y(y)} = \frac{p(x,y)}{p_Y(y)}. \]
Conditional probability distributions

- It all starts with the definition of conditional probability:
 \[P(A|B) = \frac{P(AB)}{P(B)}. \]
- If \(X \) and \(Y \) are jointly discrete random variables, we can use this to define a probability mass function for \(X \) given \(Y = y \).
 - That is, we write
 \[p_{X|Y}(x|y) = P\{X = x|Y = y\} = \frac{p(x,y)}{p_Y(y)}. \]
 - In words: first restrict sample space to pairs \((x, y)\) with given \(y \) value. Then divide the original mass function by \(p_Y(y) \) to obtain a probability mass function on the restricted space.
It all starts with the definition of conditional probability:
\[P(A|B) = \frac{P(AB)}{P(B)}. \]

If \(X \) and \(Y \) are jointly discrete random variables, we can use this to define a probability mass function for \(X \) given \(Y = y \).

That is, we write
\[p_{X|Y}(x|y) = P\{X = x|Y = y\} = \frac{p(x,y)}{p_Y(y)}. \]

In words: first restrict sample space to pairs \((x,y)\) with given \(y \) value. Then divide the original mass function by \(p_Y(y) \) to obtain a probability mass function on the restricted space.

We do something similar when \(X \) and \(Y \) are continuous random variables. In that case we write
\[f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}. \]
Conditional probability distributions

- It all starts with the definition of conditional probability:
 \[P(A|B) = \frac{P(AB)}{P(B)}. \]
- If \(X \) and \(Y \) are jointly discrete random variables, we can use this to define a probability mass function for \(X \) given \(Y = y \).
- That is, we write
 \[p_{X|Y}(x|y) = P\{X = x|Y = y\} = \frac{p(x,y)}{p_Y(y)}. \]
- In words: first restrict sample space to pairs \((x, y)\) with given \(y \) value. Then divide the original mass function by \(p_Y(y) \) to obtain a probability mass function on the restricted space.
- We do something similar when \(X \) and \(Y \) are continuous random variables. In that case we write
 \[f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}. \]
- Often useful to think of sampling \((X, Y)\) as a two-stage process. First sample \(Y \) from its marginal distribution, obtain \(Y = y \) for some particular \(y \). Then sample \(X \) from its probability distribution given \(Y = y \).
Let X be a random variable of variance σ_X^2 and Y an independent random variable of variance σ_Y^2 and write $Z = X + Y$. Assume $E[X] = E[Y] = 0$. What are the covariances $\text{Cov}(X, Y)$ and $\text{Cov}(X, Z)$? How about the correlation coefficients $\rho(X, Y)$ and $\rho(X, Z)$?
Example

Let X be a random variable of variance σ_X^2 and Y an independent random variable of variance σ_Y^2 and write $Z = X + Y$. Assume $E[X] = E[Y] = 0$.

What are the covariances $\text{Cov}(X, Y)$ and $\text{Cov}(X, Z)$?
Let X be a random variable of variance σ_X^2 and Y an independent random variable of variance σ_Y^2 and write $Z = X + Y$. Assume $E[X] = E[Y] = 0$.

What are the covariances $\text{Cov}(X, Y)$ and $\text{Cov}(X, Z)$?

How about the correlation coefficients $\rho(X, Y)$ and $\rho(X, Z)$?
Examples

- If X is binomial with parameters (p, n) then $M_X(t) = (pe^t + 1 - p)^n$.
Examples

- If X is binomial with parameters (p, n) then $M_X(t) = (pe^t + 1 - p)^n$.
- If X is Poisson with parameter $\lambda > 0$ then $M_X(t) = \exp[\lambda(e^t - 1)]$.
Examples

- If X is binomial with parameters (p, n) then
 $M_X(t) = (pe^t + 1 - p)^n$.

- If X is Poisson with parameter $\lambda > 0$ then
 $M_X(t) = \exp[\lambda(e^t - 1)]$.

- If X is normal with mean 0, variance 1, then
 $M_X(t) = e^{t^2/2}$.
Examples

- If X is binomial with parameters (p, n) then $M_X(t) = (pe^t + 1 - p)^n$.
- If X is Poisson with parameter $\lambda > 0$ then $M_X(t) = \exp[\lambda(e^t - 1)]$.
- If X is normal with mean 0, variance 1, then $M_X(t) = e^{t^2/2}$.
- If X is normal with mean μ, variance σ^2, then $M_X(t) = e^{\sigma^2 t^2/2 + \mu t}$.
Examples

- If X is binomial with parameters (p, n) then
 $$M_X(t) = (pe^t + 1 - p)^n.$$

- If X is Poisson with parameter $\lambda > 0$ then
 $$M_X(t) = \exp[\lambda(e^t - 1)].$$

- If X is normal with mean 0, variance 1, then
 $$M_X(t) = e^{t^2/2}.$$

- If X is normal with mean μ, variance σ^2, then
 $$M_X(t) = e^{\sigma^2 t^2/2 + \mu t}.$$

- If X is exponential with parameter $\lambda > 0$ then
 $$M_X(t) = \frac{\lambda}{\lambda-t}.$$
Cauchy distribution

A standard **Cauchy random variable** is a random real number with probability density \(f(x) = \frac{1}{\pi} \frac{1}{1+x^2} \).

Cool fact: if \(X_1, X_2, \ldots, X_n \) are i.i.d. Cauchy then their average \(A = \frac{X_1 + X_2 + \ldots + X_n}{n} \) is also Cauchy.
A standard **Cauchy random variable** is a random real number with probability density \(f(x) = \frac{1}{\pi} \frac{1}{1+x^2} \).

There is a “spinning flashlight” interpretation. Put a flashlight at \((0,1)\), spin it to a uniformly random angle in \([-\pi/2, \pi/2]\), and consider point \(X\) where light beam hits the \(x\)-axis.
Cauchy distribution

- A standard **Cauchy random variable** is a random real number with probability density $f(x) = \frac{1}{\pi} \frac{1}{1 + x^2}$.

- There is a “spinning flashlight” interpretation. Put a flashlight at $(0, 1)$, spin it to a uniformly random angle in $[-\pi/2, \pi/2]$, and consider point X where light beam hits the x-axis.

- $F_X(x) = P\{X \leq x\} = P\{\tan \theta \leq x\} = P\{\theta \leq \tan^{-1}x\} = \frac{1}{2} + \frac{1}{\pi} \tan^{-1}x$.

Cool fact: if X_1, X_2, \ldots, X_n are i.i.d. Cauchy then their average $A = \frac{X_1 + X_2 + \ldots + X_n}{n}$ is also Cauchy.
A standard **Cauchy random variable** is a random real number with probability density $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$.

There is a “spinning flashlight” interpretation. Put a flashlight at $(0, 1)$, spin it to a uniformly random angle in $[-\pi/2, \pi/2]$, and consider point X where light beam hits the x-axis.

$F_X(x) = P\{X \leq x\} = P\{\tan \theta \leq x\} = P\{\theta \leq \tan^{-1} x\} = \frac{1}{2} + \frac{1}{\pi} \tan^{-1} x$.

Find $f_X(x) = \frac{d}{dx} F(x) = \frac{1}{\pi} \frac{1}{1+x^2}$.
A standard **Cauchy random variable** is a random real number with probability density \(f(x) = \frac{1}{\pi} \frac{1}{1+x^2} \).

There is a “spinning flashlight” interpretation. Put a flashlight at \((0, 1)\), spin it to a uniformly random angle in \([-\pi/2, \pi/2]\), and consider point \(X\) where light beam hits the \(x\)-axis.

\[
F_X(x) = P\{X \leq x\} = P\{\tan \theta \leq x\} = P\{\theta \leq \tan^{-1} x\} = \frac{1}{2} + \frac{1}{\pi} \tan^{-1} x.
\]

Find \(f_X(x) = \frac{d}{dx} F(x) = \frac{1}{\pi} \frac{1}{1+x^2} \).

Cool fact: if \(X_1, X_2, \ldots, X_n\) are i.i.d. Cauchy then their average \(A = \frac{X_1 + X_2 + \ldots + X_n}{n}\) is also Cauchy.
Two part experiment: first let p be uniform random variable $[0, 1]$, then let X be binomial (n, p) (number of heads when we toss n p-coins).
Two part experiment: first let p be uniform random variable \([0, 1]\), then let X be binomial \((n, p)\) (number of heads when we toss n p-coins).

Given that $X = a - 1$ and $n - X = b - 1$ the conditional law of p is called the β distribution.
Two part experiment: first let p be uniform random variable $[0, 1]$, then let X be binomial (n, p) (number of heads when we toss n p-coins).

Given that $X = a - 1$ and $n - X = b - 1$ the conditional law of p is called the β distribution.

The density function is a constant (that doesn’t depend on x) times $x^{a-1}(1 - x)^{b-1}$.
Two part experiment: first let p be uniform random variable $[0, 1]$, then let X be binomial (n, p) (number of heads when we toss n p-coins).

Given that $X = a - 1$ and $n - X = b - 1$ the conditional law of p is called the β distribution.

The density function is a constant (that doesn’t depend on x) times $x^{a-1}(1 - x)^{b-1}$.

That is $f(x) = \frac{1}{B(a,b)}x^{a-1}(1 - x)^{b-1}$ on $[0, 1]$, where $B(a, b)$ is constant chosen to make integral one. Can show $B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$.

Γ represents the Gamma function.
Beta distribution

- Two part experiment: first let p be uniform random variable $[0, 1]$, then let X be binomial (n, p) (number of heads when we toss n p-coins).
- **Given** that $X = a - 1$ and $n - X = b - 1$ the conditional law of p is called the β distribution.
- The density function is a constant (that doesn’t depend on x) times $x^{a-1}(1 - x)^{b-1}$.
- That is $f(x) = \frac{1}{B(a,b)} x^{a-1}(1 - x)^{b-1}$ on $[0, 1]$, where $B(a, b)$ is constant chosen to make integral one. Can show $B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$.
- Turns out that $E[X] = \frac{a}{a+b}$ and the mode of X is $\frac{(a-1)}{(a-1)+(b-1)}$.