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Distribution of function of random variable

I Suppose P{X ≤ a} = FX (a) is known for all a. Write
Y = X 3. What is P{Y ≤ 27}?

I Answer: note that Y ≤ 27 if and only if X ≤ 3. Hence
P{Y ≤ 27} = P{X ≤ 3} = FX (3).

I Generally FY (a) = P{Y ≤ a} = P{X ≤ a1/3} = FX (a1/3)

I This is a general principle. If X is a continuous random
variable and g is a strictly increasing function of x and
Y = g(X ), then FY (a) = FX (g−1(a)).

I How can we use this to compute the probability density
function fY from fX ?

I If Z = X 2, then what is P{Z ≤ 16}?
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Joint probability mass functions: discrete random variables

I If X and Y assume values in {1, 2, . . . , n} then we can view
Ai ,j = P{X = i ,Y = j} as the entries of an n × n matrix.

I Let’s say I don’t care about Y . I just want to know
P{X = i}. How do I figure that out from the matrix?

I Answer: P{X = i} =
∑n

j=1 Ai ,j .

I Similarly, P{Y = j} =
∑n

i=1 Ai ,j .

I In other words, the probability mass functions for X and Y
are the row and columns sums of Ai ,j .

I Given the joint distribution of X and Y , we sometimes call
distribution of X (ignoring Y ) and distribution of Y (ignoring
X ) the marginal distributions.

I In general, when X and Y are jointly defined discrete random
variables, we write p(x , y) = pX ,Y (x , y) = P{X = x ,Y = y}.
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Joint distribution functions: continuous random variables

I Given random variables X and Y , define
F (a, b) = P{X ≤ a,Y ≤ b}.

I The region {(x , y) : x ≤ a, y ≤ b} is the lower left “quadrant”
centered at (a, b).

I Refer to FX (a) = P{X ≤ a} and FY (b) = P{Y ≤ b} as
marginal cumulative distribution functions.

I Question: if I tell you the two parameter function F , can you
use it to determine the marginals FX and FY ?

I Answer: Yes. FX (a) = limb→∞ F (a, b) and
FY (b) = lima→∞ F (a, b).



Joint distribution functions: continuous random variables

I Given random variables X and Y , define
F (a, b) = P{X ≤ a,Y ≤ b}.

I The region {(x , y) : x ≤ a, y ≤ b} is the lower left “quadrant”
centered at (a, b).

I Refer to FX (a) = P{X ≤ a} and FY (b) = P{Y ≤ b} as
marginal cumulative distribution functions.

I Question: if I tell you the two parameter function F , can you
use it to determine the marginals FX and FY ?

I Answer: Yes. FX (a) = limb→∞ F (a, b) and
FY (b) = lima→∞ F (a, b).



Joint distribution functions: continuous random variables

I Given random variables X and Y , define
F (a, b) = P{X ≤ a,Y ≤ b}.

I The region {(x , y) : x ≤ a, y ≤ b} is the lower left “quadrant”
centered at (a, b).

I Refer to FX (a) = P{X ≤ a} and FY (b) = P{Y ≤ b} as
marginal cumulative distribution functions.

I Question: if I tell you the two parameter function F , can you
use it to determine the marginals FX and FY ?

I Answer: Yes. FX (a) = limb→∞ F (a, b) and
FY (b) = lima→∞ F (a, b).



Joint distribution functions: continuous random variables

I Given random variables X and Y , define
F (a, b) = P{X ≤ a,Y ≤ b}.

I The region {(x , y) : x ≤ a, y ≤ b} is the lower left “quadrant”
centered at (a, b).

I Refer to FX (a) = P{X ≤ a} and FY (b) = P{Y ≤ b} as
marginal cumulative distribution functions.

I Question: if I tell you the two parameter function F , can you
use it to determine the marginals FX and FY ?

I Answer: Yes. FX (a) = limb→∞ F (a, b) and
FY (b) = lima→∞ F (a, b).



Joint distribution functions: continuous random variables

I Given random variables X and Y , define
F (a, b) = P{X ≤ a,Y ≤ b}.

I The region {(x , y) : x ≤ a, y ≤ b} is the lower left “quadrant”
centered at (a, b).

I Refer to FX (a) = P{X ≤ a} and FY (b) = P{Y ≤ b} as
marginal cumulative distribution functions.

I Question: if I tell you the two parameter function F , can you
use it to determine the marginals FX and FY ?

I Answer: Yes. FX (a) = limb→∞ F (a, b) and
FY (b) = lima→∞ F (a, b).



Joint density functions: continuous random variables

I Suppose we are given the joint distribution function
F (a, b) = P{X ≤ a,Y ≤ b}.

I Can we use F to construct a “two-dimensional probability
density function”? Precisely, is there a function f such that
P{(X ,Y ) ∈ A} =

∫
A f (x , y)dxdy for each (measurable)

A ⊂ R2?

I Let’s try defining f (x , y) = ∂
∂x

∂
∂y F (x , y). Does that work?

I Suppose first that A = {(x , y) : x ≤ a,≤ b}. By definition of
F , fundamental theorem of calculus, fact that F (a, b)
vanishes as either a or b tends to −∞, we indeed find∫ b
−∞

∫ a
−∞

∂
∂x

∂
∂y F (x , y)dxdy =

∫ b
−∞

∂
∂y F (a, y)dy = F (a, b).

I From this, we can show that it works for strips, rectangles,
general open sets, etc.
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Independent random variables

I We say X and Y are independent if for any two (measurable)
sets A and B of real numbers we have

P{X ∈ A,Y ∈ B} = P{X ∈ A}P{Y ∈ B}.

I Intuition: knowing something about X gives me no
information about Y , and vice versa.

I When X and Y are discrete random variables, they are
independent if P{X = x ,Y = y} = P{X = x}P{Y = y} for
all x and y for which P{X = x} and P{Y = y} are non-zero.

I What is the analog of this statement when X and Y are
continuous?

I When X and Y are continuous, they are independent if
f (x , y) = fX (x)fY (y).
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Sample problem: independent normal random variables

I Suppose that X and Y are independent normal random
variables with mean zero and variance one.

I What is the probability that (X ,Y ) lies in the unit circle?
That is, what is P{X 2 + Y 2 ≤ 1}?

I First, any guesses?

I Probability X is within one standard deviation of its mean is
about .68. So (.68)2 is an upper bound.

I f (x , y) = fX (x)fY (y) = 1√
2π
e−x

2/2 1√
2π
e−y

2/2 = 1
2π e
−r2/2

I Using polar coordinates, we want∫ 1
0 (2πr) 1

2π e
−r2/2dr = −e−r2/2

∣∣1
0

= 1− e−1/2 ≈ .39.
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Repeated die roll

I Roll a die repeatedly and let X be such that the first even
number (the first 2, 4, or 6) appears on the X th roll.

I Let Y be the the number that appears on the X th roll.

I Are X and Y independent? What is their joint law?

I If j ≥ 1, then

P{X = j ,Y = 2} = P{X = j ,Y = 4}

= P{X = j ,Y = 6} = (1/2)j−1(1/6) = (1/2)j(1/3).

I Can we get the marginals from that?
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Continuous time variant of repeated die roll

I On a certain hiking trail, it is well known that the lion, tiger,
and bear attacks are independent Poisson processes with
respective λ values of .1/hour, .2/hour, and .3/hour.

I Let T ∈ R be the amount of time until the first animal
attacks. Let A ∈ {lion, tiger,bear} be the species of the first
attacking animal.

I What is the probability density function for T? How about
E [T ]?

I Are T and A independent?

I Let T1 be the time until the first attack, T2 the subsequent
time until the second attack, etc., and let A1,A2, . . . be the
corresponding species.

I Are all of the Ti and Ai independent of each other? What are
their probability distributions?
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More lions, tigers, bears

I Lion, tiger, and bear attacks are independent Poisson
processes with λ values .1/hour, .2/hour, and .3/hour.

I Distribution of time Ttiger till first tiger attack?

I Exponential λtiger = .2/hour. So P{Ttiger > a} = e−.2a.

I How about E [Ttiger] and Var[Ttiger]?

I E [Ttiger] = 1/λtiger = 5 hours, Var[Ttiger] = 1/λ2tiger = 25
hours squared.

I Time until 5th attack by any animal?

I Γ distribution with α = 5 and λ = .6.

I X , where X th attack is 5th bear attack?

I Negative binomial with parameters p = 1/2 and n = 5.

I Can hiker breathe sigh of relief after 5 attack-free hours?
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Buffon’s needle problem

I Drop a needle of length one on a large sheet of paper (with
evenly spaced horizontal lines spaced at all integer heights).

I What’s the probability the needle crosses a line?

I Need some assumptions. Let’s say vertical position X of
lowermost endpoint of needle modulo one is uniform in [0, 1]
and independent of angle θ, which is uniform in [0, π]. Crosses
line if and only there is an integer between the numbers X
and X + sin θ, i.e., X ≤ 1 ≤ X + sin θ.

I Draw the box [0, 1]× [0, π] on which (X , θ) is uniform.
What’s the area of the subset where X ≥ 1− sin θ?
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