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Exponential random variables

I Say X is an exponential random variable of parameter λ
when its probability distribution function is

f (x) =

{
λe−λx x ≥ 0

0 x < 0
.

I For a > 0 have

FX (a) =

∫ a

0
f (x)dx =

∫ a

0
λe−λxdx = −e−λx

∣∣a
0

= 1− e−λa.

I Thus P{X < a} = 1− e−λa and P{X > a} = e−λa.

I Formula P{X > a} = e−λa is very important in practice.



Exponential random variables

I Say X is an exponential random variable of parameter λ
when its probability distribution function is

f (x) =

{
λe−λx x ≥ 0

0 x < 0
.

I For a > 0 have

FX (a) =

∫ a

0
f (x)dx =

∫ a

0
λe−λxdx = −e−λx

∣∣a
0

= 1− e−λa.

I Thus P{X < a} = 1− e−λa and P{X > a} = e−λa.

I Formula P{X > a} = e−λa is very important in practice.



Exponential random variables

I Say X is an exponential random variable of parameter λ
when its probability distribution function is

f (x) =

{
λe−λx x ≥ 0

0 x < 0
.

I For a > 0 have

FX (a) =

∫ a

0
f (x)dx =

∫ a

0
λe−λxdx = −e−λx

∣∣a
0

= 1− e−λa.

I Thus P{X < a} = 1− e−λa and P{X > a} = e−λa.

I Formula P{X > a} = e−λa is very important in practice.



Exponential random variables

I Say X is an exponential random variable of parameter λ
when its probability distribution function is

f (x) =

{
λe−λx x ≥ 0

0 x < 0
.

I For a > 0 have

FX (a) =

∫ a

0
f (x)dx =

∫ a

0
λe−λxdx = −e−λx

∣∣a
0

= 1− e−λa.

I Thus P{X < a} = 1− e−λa and P{X > a} = e−λa.

I Formula P{X > a} = e−λa is very important in practice.



Moment formula

I Suppose X is exponential with parameter λ, so
fX (x) = λe−λx when x ≥ 0.

I What is E [X n]? (Say n ≥ 1.)

I Write E [X n] =
∫∞
0 xnλe−λxdx .

I Integration by parts gives
E [X n] = −

∫∞
0 nxn−1λ e−λx

−λ dx + xnλ e−λx

−λ
∣∣∞
0

.

I We get E [X n] = n
λE [X n−1].

I E [X 0] = E [1] = 1, E [X ] = 1/λ, E [X 2] = 2/λ2,
E [X n] = n!/λn.

I If λ = 1, then E [X n] = n!. Could take this as definition of n!.
It makes sense for n = 0 and for non-integer n.

I Variance: Var[X ] = E [X 2]− (E [X ])2 = 1/λ2.
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Minimum of independent exponentials is exponential

I CLAIM: If X1 and X2 are independent and exponential with
parameters λ1 and λ2 then X = min{X1,X2} is exponential
with parameter λ = λ1 + λ2.

I How could we prove this?

I Have various ways to describe random variable Y : via density
function fY (x), or cumulative distribution function
FY (a) = P{Y ≤ a}, or function P{Y > a} = 1− FY (a).

I Last one has simple form for exponential random variables.
We have P{Y > a} = e−λa for a ∈ [0,∞).

I Note: X > a if and only if X1 > a and X2 > a.

I X1 and X2 are independent, so
P{X > a} = P{X1 > a}P{X2 > a} = e−λ1ae−λ2a = e−λa.

I If X1, . . . ,Xn are independent exponential with λ1, . . . λn, then
min{X1, . . .Xn} is exponential with λ = λ1 + . . .+ λn.
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Memoryless property

I Suppose X is exponential with parameter λ.

I Memoryless property: If X represents the time until an
event occurs, then given that we have seen no event up to
time b, the conditional distribution of the remaining time till
the event is the same as it originally was.

I To make this precise, we ask what is the probability
distribution of Y = X − b conditioned on X > b?

I We can characterize the conditional law of Y , given X > b,
by computing P(Y > a|X > b) for each a.

I That is, we compute
P(X − b > a|X > b) = P(X > b + a|X > b).

I By definition of conditional probability, this is just
P{X > b + a}/P{X > b} = e−λ(b+a)/e−λb = e−λa.

I Thus, conditional law of X − b given that X > b is same as
the original law of X .
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Memoryless property for geometric random variables

I Similar property holds for geometric random variables.

I If we plan to toss a coin until the first heads comes up, then
we have a .5 chance to get a heads in one step, a .25 chance
in two steps, etc.

I Given that the first 5 tosses are all tails, there is conditionally
a .5 chance we get our first heads on the 6th toss, a .25
chance on the 7th toss, etc.

I Despite our having had five tails in a row, our expectation of
the amount of time remaining until we see a heads is the
same as it originally was.
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Exchange overheard on Logan airport shuttle

I Bob: There’s this really interesting problem in statistics I just
learned about. If a coin comes up heads 10 times in a row,
how likely is the next toss to be heads?

I Alice: Still fifty fifty.

I Bob: That’s a common mistake, but you’re wrong because
the 10 heads in a row increase the conditional probability that
there’s something funny going on with the coin.

I Alice: You never said it might be a funny coin.

I Bob: That’s the point. You should always suspect that there
might be something funny with the coin.

I Alice: It’s a math puzzle. You always assume a normal coin.

I Bob: No, that’s your mistake. You should never assume that,
because maybe somebody tampered with the coin.
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Exchange overheard on a Logan airport shuttle

I Alice: Yeah, yeah, I get it. I can’t win here.

I Bob: No, I don’t think you get it yet. It’s a subtle point in
statistics. It’s very important.

I Exchange continued for duration of shuttle ride (Alice
increasingly irritated, Bob increasingly patronizing).

I Raises interesting question about memoryless property.

I Suppose the duration of a couple’s relationship is exponential
with λ−1 equal to two weeks.

I Given that it has lasted for 10 weeks so far, what is the
conditional probability that it will last an additional week?

I How about an additional four weeks? Ten weeks?
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Remark on Alice and Bob

I Alice assumes Bob means “independent tosses of a fair coin.”
Under this assumption, all 211 outcomes of eleven-coin-toss
sequence are equally likely. Bob considers HHHHHHHHHHH
more likely than HHHHHHHHHHT, since former could result
from a faulty coin.

I Alice sees Bob’s point but considers it annoying and churlish
to ask about coin toss sequence and criticize listener for
assuming this means “independent tosses of fair coin”.

I Without that assumption, Alice has no idea what context Bob
has in mind. (An environment where two-headed novelty coins
are common? Among coin-tossing cheaters with particular
agendas?...)

I Alice: you need assumptions to convert stories into math.

I Bob: good to question assumptions.
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Radioactive decay: maximum of independent exponentials

I Suppose you start at time zero with n radioactive particles.
Suppose that each one (independently of the others) will
decay at a random time, which is an exponential random
variable with parameter λ.

I Let T be amount of time until no particles are left. What are
E [T ] and Var[T ]?

I Let T1 be the amount of time you wait until the first particle
decays, T2 the amount of additional time until the second
particle decays, etc., so that T = T1 + T2 + . . .Tn.

I Claim: T1 is exponential with parameter nλ.

I Claim: T2 is exponential with parameter (n − 1)λ.

I And so forth. E [T ] =
∑n

i=1 E [Ti ] = λ−1
∑n

j=1
1
j and (by

independence) Var[T ] =
∑n

i=1Var[Ti ] = λ−2
∑n

j=1
1
j2

.
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Relationship to Poisson random variables

I Let T1,T2, . . . be independent exponential random variables
with parameter λ.

I We can view them as waiting times between “events”.

I How do you show that the number of events in the first t
units of time is Poisson with parameter λt?

I We actually did this already in the lecture on Poisson point
processes. You can break the interval [0, t] into n equal pieces
(for very large n), let Xk be number of events in kth piece, use
memoryless property to argue that the Xk are independent.

I When n is large enough, it becomes unlikely that any interval
has more than one event. Roughly speaking: each interval has
one event with probability λt/n, zero otherwise.

I Take n→∞ limit. Number of events is Poisson λt.
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