
BASIC DISCRETE RANDOM VARIABLES X (using q = 1− p)

1. Binomial (n, p): pX(k) =
(
n
k

)
pkqn−k and E[X] = np and Var[X] = npq.

2. Poisson with mean λ: pX(k) = e−λλk/k! and Var[X] = λ.

3. Geometric p: pX(k) = qk−1p and E[X] = 1/p and Var[X] = q/p2.

4. Negative binomial (n, p): pX(k) =
(
k−1
n−1

)
pnqk−n, E[X] = n/p, Var[X] = nq/p2.

BASIC CONTINUOUS RANDOM VARIABLES X

1. General rules: fX+b(x) = fX(x− b) and fX/a(x) = afX(ax) and thus faX(a) = 1
afX(x/a).

2. Uniform on [a, b]: fX(x) = 1/(b− a) on [a, b] and E[X] = (a+ b)/2 and Var[X] = (b− a)2/12.

3. Normal with mean µ variance σ2: fX(x) = 1
σ
√
2π
e−(x−µ)2/2σ2

.

4. Exponential with rate λ: fX(x) = λe−λx (on [0,∞)) and E[X] = 1/λ and Var[X] = 1/λ2.

5. Gamma (n, λ): fX(x) = λ
Γ(n)e

−λx(λx)n−1 (on [0,∞)) and E[X] = n/λ and Var[X] = n/λ2.

6. Cauchy: fX(x) = 1
π(1+x2)

and both E[X] and Var[X] are undefined.

7. Beta (a, b): fX(x) = xa−1(1−x)b−1

B(a,b) on [0,1] and E[X] = a/(a+ b).

MOMENT GENERATING / CHARACTERISTIC FUNCTIONS

1. Discrete: MX(t) = E[etX ] =
∑

x pX(x)etx and ϕX(t) = E[eitX ] =
∑

x pX(x)eitx.

2. Continuous: MX(t) = E[etX ] =
∫∞
−∞ fX(x)etxdx and ϕX(t) = E[eitX ] =

∫∞
−∞ fX(x)eitxdx.

3. If X and Y are independent: MX+Y (t) = MX(t)MY (t) and ϕX+Y (t) = ϕX(t)ϕY (t).

4. Affine transformations: MaX+b(t) = ebtMX(at) and ϕaX+b(t) = eibtϕX(at)

5. Some special cases: if X is normal (0, 1), complete-the-square trick gives MX(t) = et
2/2 and

ϕX(t) = e−t2/2. If X is Poisson λ get “double exponential” MX(t) = eλ(e
t−1) and ϕX(t) = eλ(e

it−1).

STORIES BEHIND BASIC DISCRETE RANDOM VARIABLES

1. Binomial (n, p): sequence of n coins, each heads with probability p, have
(
n
k

)
ways to choose a set

of k to be heads; have pk(1− p)n−k chance for each choice. If n = 1 then X ∈ {0, 1} so
E[X] = E[X2] = p, and Var[X] = E[X2]− E[X]2 = p− p2 = pq. Use expectation/variance
additivity (for independent coins) for general n.

2. Poisson λ: pX(k) is e−λ times kth term in Taylor expansion of eλ. Take n very large and let Y be
# heads in n tosses of coin with p = λ/n. Then E[Y ] = np = λ and Var(Y ) = npq ≈ np = λ. Law
of Y tends to law of X as n → ∞, so not surprising that E[X] = Var[X] = λ.

3. Geometric p: Probability to have no heads in first k − 1 tosses and heads in kth toss is
(1− p)k−1p. If you think about repeatedly a tossing coin forever, it makes intuitive sense that if
you have (in expectation) p heads per toss, then you should need (in expectation) 1/p tosses to get
a heads. Variance formula requires calculation, but not surprising that Var(X) ≈ 1/p2 when p is
small (when p is small X is kind like of exponential random variable with p = λ) and Var(X) ≈ 0
when q is small.
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4. Negative binomial (n, p): If you want nth heads to be on the kth toss then you have to have
n− 1 heads during first k − 1 tosses, and then a heads on the kth toss. Expectations and variance
are n times those for geometric (since were’re summing n independent geometric random variables).

STORIES BEHIND BASIC CONTINUUM RANDOM VARIABLES

1. General Rules: should make intuitive sense that adding b to X corresponds to translating fX
right by b units — and also that dividing X by a corresponds to “squashing” the graph of fX
horizontally by a factor of a and “stretching” it vertically by a factor of a. Alternatively, note
FX+b(x) = P (X + b ≤ x) = P (X ≤ x− b) = FX(x− b) and differentiating both sides gives
fX+b(x) = fX(x− b). Similarly FX/a(x) = P (X/a ≤ x) = P (X ≤ ax) = FX(ax). Differentiate both
sides to get fX/a(x) = afX(ax).

2. Uniform on [a, b]: Total integral is one, so density is 1/(b−a) on [a, b]. E[X] is midpoint (a+ b)/2.
When a = 0 and b = 1, w know E[X2] =

∫ 1
0 x2dx = 1/3, so that Var(X) = 1/3− 1/4 = 1/12.

Stretching out random variable by (b− a) multiplies variance by (b− a)2.

3. Normal (µ, σ2): when σ = 1 and µ = 0 we have fX(x) = 1√
2π
e−x2/2. The function e−x2/2 is (up to

multiplicative constant) its own Fourier transform. The fact that
∫∞
−∞ e−x2/2dx =

√
2π came from

a cool and hopefully memorable trick involving passing to two dimensions and using polar
coordinates. Once one knows the σ = 1, µ = 0 case, general case comes from stretching/squashing
the distribution by a factor of σ and then translating it by µ.

4. Exponential λ: Suppose λ = 1. Then fX(x) = e−x on [0,∞). Remember the integration by parts
induction that proves

∫∞
0 e−xxn = n!. So E[X] = 1! = 1 and E[X2] = 2! = 2 so that

Var[X] = 2− 1 = 1. We think of λ as rate (“number of buses per time unit”) so replacing 1 by λ
multiplies wait time by 1/λ, which leads to E[X] = 1/λ and Var(X) = 1/λ2.

5. Gamma (n, λ): Again, focus on the λ = 1 case. Then fX is just e−xxn−1 times the appropriate
constant. Since X represents time until nth bus, expectation and variance should be n (by
additivity of variance and expectation). If we switch to general λ, we stretch and squash fX (and
adjust expecation and variance accordingly). Recall that Γ(n) = (n− 1)!.

6. Cauchy: If you remember that 1/(1 + x2) is the derivative of arctangent, you can see why this
corresponds to the spinning flashlight story and where the 1/π factor comes from. Asymptotic 1/x2

decay rate is why
∫∞
−∞ fX(x)dx is finite but

∫∞
−∞ fX(x)xdx and

∫∞
−∞ fX(x)x2dx diverge.

7. Beta (a, b): fX(x) is (up to a constant factor) the probability (as a function of x) that you see
a− 1 heads and b− 1 tails when you toss a+ b− 2 p-coins with p = x. So makes sense that if
Bayesian prior for p is uniform then Bayesian posterior (after seeing a− 1 heads and b− 1 tails)

should be proportional to this. The constant B(a, b) = Γ(a)Γ(b)
Γ(a+b) = (a−1)!(b−1)!

(a+b−1)! is chosen to make the

total integral one. Expectation formula (which you computed on pset) suggests rough intuition: if
you have uniform prior for fraction of people who like new restaurant, and then (a− 1) people say
they do and (b− 1) say they don’t, your revised expectation for fraction who like restaurant is a

a+b .

(You might have guessed (a−1)
(a−1)+(b−1) , but that is not correct — and you can see why it would be

wrong if a− 1 = 0 or b− 1 = 0.)

2


