
Cauchy, beta, gamma and the infinite expectation paradox

18.600 Problem Set 7, due April 13

Welcome to your seventh 18.600 problem set! This problem set features problems about
beta, Γ, and Cauchy random variables. These random variables are not quite as ubiquitous as
others we have discussed (exponential, uniform, normal, Poisson, binomial) but they are fun
and do come up. The problems should help you internalize the definitions and some standard
interpretations.

Many of you are familiar with Pascal’s wager. The general idea is that if choosing A over B
comes with a finite cost but a positive probability (however small) of an infinite payoff, then one
should always choose A. Pascal’s conclusion was that if living a virtuous life leads (with even
a tiny probability) to an eternal reward, then it is a worthwhile sacrifice to make. A common
criticism is that this kind of thinking can lead to violence (killing heretics who might lead souls
astray, or dissidents who might obstruct an endless Marxist utopia) as well as virtue. A more
mathematical concern is that in principle there may be many choices, each of which we expect
to do an infinite amount of good (and perhaps also an infinite amount of harm) and that there
is no obvious mathematical way to compare the competing infinities.

The comparison difficulties associated with infinite expectations can arise even when the
payoffs themselves are finite with probability one (e.g., if the utility payout is a Cauchy random
variable). This problem set illustrates this point with a particularly vexing form of a famous
envelope switching paradox. Interestingly, in this paradox, the conditional expectations used
for decision making are all finite; but a certain a priori expectation is infinite, and that is the
root of the paradox. I hope that you enjoy thinking about the story, and that it causes you at
most a finite amount of existential angst.

Please stop by my weekly office hours (2-249, Wednesday 3 to 5) for discussion.

A. FROM TEXTBOOK CHAPTER FIVE: Theoretical Exercise 26: If X is a beta random
variable with parameters a and b show that

E[X] =
a

a+ b
,

Var(X) =
ab

(a+ b)2(a+ b+ 1)
.

B. FROM TEXTBOOK CHAPTER SIX: Theoretical Exercise 12: Show that the jointly
continuous (discrete) random variables X1, . . . Xn are independent if and only if their joint
probability density (mass) function f(x1, . . . , xn) can be written as

f(x1, . . . , xn) =

n∏
i=1

gi(xi),

for nonnegative functions gi(x), i = 1, . . . , n.
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C. Let p be the fraction of MIT students who love Taylor Swift — or, more precisely, the
fraction who will say they love Taylor Swift when you ask (making it clear that you absolutely
require a simple yes or no answer). Let’s make believe that your initial Bayesian prior for p is
uniform on [0, 1]. Now ask three of your fellow students (actually do this!) one at a time
whether they love Taylor Swift, and write the pair (# yes answers so far, # no answers so far)
before you start and after each time you ask a question. For example, you will write the pairs

(0, 0), (1, 0), (2, 0), (3, 0)

if everyone you ask loves Taylor Swift. Pretend that you have chosen your people uniformly at
random from the large MIT population, so that each answer is yes with probabilty p and no
with probability (1− p) independently of the other answers. Then write down each of the four
number pairs, and beside each one draw a rough picture of the graph of the revised probability
density function for p that you would have at that point in time, along with its algebraic
expression, which should be a polynomial whose integral from 0 to 1 is 1. You can use
graphing software if you want. Beside each graph write down the corresponding conditional
expectation for p (using the results from part A) given what you know at that time.

D. The following is one formulation of a famous “two envelope” paradox. Jill is a
money-loving individual who, given two options, invariably chooses the one that gives her the
most money in expectation. One day Harry, a trusted (and capable of delivering) individual,
offers her the following deal as a gift. He will secretely toss a fair coin until the first time that
it comes up tails. If there are n heads before the first tails, he will place 10n dollars in one
envelope and 10n+1 dollars in the second envelope. (Thus, the probability that one envelope
has 10n dollars and the other has 10n+1 dollars is 2−n−1 for n ≥ 0.) Harry will then hand Jill
the pair of envelopes (randomly ordered, indistinguishable from the outside) and invite her to
choose one. After Jill chooses an envelope she will be allowed to open it. Once she does, she
will be allowed to either keep the money in the first envelope or switch to the second envelope
and keep whatever amount of money is in the second envelope. However, if she decides to
switch envelopes, she has to pay a one dollar “switching fee.”

(a) If Jill finds 100 dollars in the first envelope she opens, what is the conditional probability
that the other envelope contains 1000 dollars? What is the conditional probability that
the other envelope contains 10 dollars?

(b) If Jill finds 100 dollars in the first envelope she opens, how much money does Jill expect
to win from the game if she does not switch envelopes? (Answer: 100 dollars.) How
much does she expect to win (net, after the switching fee) if she does switch envelopes?

(c) Generalize the answers above to the case that the first envelope contains 10n dollars (for
n ≥ 0) instead of 100.
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(d) Jill concludes from the above that, no matter what she finds in the first envelope, she will
expect to earn more money if she switches envelopes and pays the one dollar switching
fee. This strikes Jill as a bit odd. If she knows she will always switch envelopes, why
doesn’t she just take the second envelope first and avoid the envelope switching fee?
How can she be maximizing her expected wealth if she spends an unnecessary “switching
fee” dollar no matter what? How does one resolve this apparent paradox?

E. Alice and Bob are interested in having a child and, after difficulty conceiving, decide to
undergo a medical procedure called IVF. In their universe, each couple has a random quantity
p, uniformly distributed on [0, 1], which indicates the probability that they will conceive a
child after a cycle of IVF treatment. (The value p depends on permanent biological
characteristics of Alice and Bob, but its value is unknown to them, so we model it as a random
variable.) If Alice and Bob attempt multiple cycles, each one succeeds with the same
probability p, independently of what happens on previous cycles.

(a) Explain intuitively why (in this universe) the probability that Alice and Bob conceive
after one cycle should be .5 (i.e., the expected value of p).

(b) Given that Alice and Bob did not conceive during the first (k − 1) cycles, what is the
updated Bayesian probability density for the random variable p?

(c) Use the answer in (b) to explicitly compute the expected value for p, given that the
couple did not conceive during the first (k − 1) cycles. The answer is the conditional
probability that the couple conceives during the kth cycle, given that they did not
conceive during the first (k − 1) cycles. (One can prove in general that if one first
chooses r in some random fashion and then tosses a coin that is heads with probability r,
the overall probability of heads is the expectation E[r].)

(d) Compute the conditional probability describe in (c) in a different way: imagine that
X0, X1, X2, . . . , Xk are uniformly and independently distributed on [0, 1]. Write p = X0

and declare that the jth cycle succeeds if and only if Xj < X0. Show that this model is
equivalent to the one initially described, and then explain why the probability that
Xk < X0, given that X0 is the smallest of the set {X0, X1, . . . , Xk−1}, should be
1/(k + 1). [Hint: use symmetry to argue that a priori the rank ordering of
X0, X1, . . . , Xk is equally likely to be given by each of the (k+ 1)! possible permutations.]

(e) Suppose that instead of being uniform the random variable p is a priori distributed on
[0, 1] according to the density function f(x) = 2− 2x. (This might be more realistic, see
remark below.) Under this assumption, compute the probability of success on the kth
cycle given that the first (k − 1) cycles failed. [Hint: recognize f(x) as itself a beta
random variable and reduce to the previous case.]
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Remark: This problem was inspired by a NY Times article called With in vitro fertilization
persistence pays off (look it up) which reports on a large study:

The rate of live births for participants after the first cycle in the new study was
29.5 percent, compared with 20.5 percent ater the fourth cycle, 17.4 percent after
the sixth cycle, and 15.7 percent after the ninth cycle.

The numbers start a bit below our answer in (e) (since .295 < 1/3) and end up larger (since
.157 > 1/11). This may suggest that p values are not distributed according the f that we
guessed (somewhat arbitrarily) in (e). On the other hand, maybe different people have
different Bayesian priors for p (based on age, known physical issues, etc.) and those whose p
values are expected a priori to be small tend to discontinue IVF after fewer cycles; if so, this
could explain the higher reported success rates for later cycles.

Remark: On Divorce Planet, each person has an inborn and immutable quantity p chosen
uniformly from [0, 1]. Upon reaching adulthood, each person marries somebody with essentially
the same p value (assortative mating). With probability p the marriage lasts forever; otherwise
it ends within a few years, the individuals remarry (again, somebody with a similar p value),
and the experiment starts over. The story is similar to the IVF model discussed above, but
with IVF cycles replaced by weddings and “conceiving a child” replaced by “entering a lasting
marriage” and the initial p distribution being uniform. Using the analysis in the above
problem, one can show that on Divorce Planet, 1/2 of first marriages, 2/3 of second marriages,
and 3/4 of third marriages end in divorce. Our world may be very different from Divorce
Planet, but according to https://www.psychologytoday.com/blog/the-intelligent-

divorce/201202/the-high-failure-rate-second-and-third-marriages the divorce rates
in the modern U.S. are strikingly similar: 50 percent for first marriages, 67 percent for second
marriages, and 73 percent for third marriages. The linked to article speculates about several
possible reasons the rate might be higher for later marriages, without really considering the
one that applies on Divorce Planet (i.e., that there are persistent attributes that make some
people more prone to divorce than others, and that one expects people entering later
marriages on average to have more such attributes than people entering first marriages). I
certainly do not claim to know which explanations are correct on our planet.

F. Suppose X1, X2, . . . , X6 are independent Cauchy random variables. Compute the
probability that X1 +X2 +X3 > X4 +X5 +X6 + 3. (Hint: try combining the spinning
flashlight story with left-right symmetry and the fact that the average of independent Cauchy
random variables is itself a Cauchy random variable.)

G. Let X be a Γ random variable with parameters λ = 1 and α = n where n is an integer. Let
Y be an exponential random variable with parameter λ = 1. Derive the variance for X from
the variance for Y using a “waiting time until nth bus” story.

H. Harper and Heloise are real estate agents for a corporate firm. Once a week, each of them
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is assigned to close an important deal. It is known that one of the two associates closes her
deals successfully 60 percent of the time (model these as i.i.d. coin tosses) and the other 50
percent (also i.i.d. coin tosses) but you are not sure which is which. You formulate a plan: you
will wait N weeks, so that each associate gets to attempt N different deals, and then you will
offer a permanent job to the associate who is ahead in number of closings. The main
question we’d like to answer is this: roughly how large does N have to be to ensure that
there is a 95 percent chance that the more capable closer (i.e., the one with closing probability
.6) is ahead after N steps? We’ll approximately solve this in three steps:

1. Let XN and YN be the number of deals closed by (respectively) the more and less
capable agents agent after N steps. So XN and YN represent the number of heads in N
tosses of a p-coin with (respectively) p = .6 and p = .5. Compute (in terms of N) the
mean and variance of the random variable SN = XN − YN .

2. For the random variable SN , compute (in terms of N) how many standard deviations 0
is below the mean. That is, find E[SN ]/SD[SN ] where SD denotes standard deviation.

3. The De Moivre Laplace theorem (special case of the central limit theorem, which will
come later in the course) suggests that if N is large, both XN and YN are approximately
normal variables. Since XN and YN are independent (and since the difference between
two independent normal random variables is itself normal) one can argue that
SN = X − Y is also roughly Gaussian. (You don’t have to formally prove this. Just take
it as given for now.) In particular, if ZN is a normal random variable with the same
mean and variance as SN then P (SN > 0) ≈ P (ZN > 0). Compute an approximate value
for P (ZN > 0) when N = 143. We can interpret this as an approximation for the
probability that SN is positive (so the better closer wins). If it helps, you may assume
that P (X ≤ 1.7 ≈ .95) for normal X with mean zero and variance one and that√

143/7 ≈ 1.7. Conclude that 143 is roughly the answer to the main question.

Remark: Even though there is a huge difference between the two agents, it actually takes
years to determine with confidence which is better. If you as the manager think you can tell
based on just a few outcomes, you are deluding yourself—the noise to signal ratio is too high.
This problem appeared (without the real estate agent story) in the 538 Riddler
http://fivethirtyeight.com/features/rock-paper-scissors-double-scissors/ (which
often has great probability puzzles) and also in an academic paper
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3034686 which surveyed
financial experts to see how many flips they thought were necessary. Feel free to look up these
references for more detailed calculations. The paper states:

“The median guess was 40 flips. While lower than the full-credit answer of 143, it does show
that the respondents in general appreciate it takes a long time to identify a phenomenon with
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this kind of risk/reward ratio simply by history. We include in Appendix 1 the calculation
used to arrive at 143.3 Our respondents are a pretty mathematical bunch, and we suspect that
if they took their time to calculate an answer, rather than giving a quick guess as we
requested, most would have arrived at the correct answer. But the point of the exercise was to
illustrate how when we are thinking fast, we tend to overweight the value of small samples: a
full 30% of respondents, the single largest bucket, thought 10 flips or less was sufficient. This
built-in bias to over-weight small samples results in a tendency to ignore the investing dictum
‘past performance is not indicative of future results’ when we clearly should not.”

Remark: Economics Planet has two political parties. When one is in power, the economy is
good with probability .5. When the other is in power, the economy is good with probability .6.
The second party is then much better for the economy on average, but it would take over a
thousand years (of alternating parties every 4 years) to be 95 percent confident that we could
determine which was which.

Remark: It is fun to think of other stories along these lines. Maybe one medicine cures your
headache with probability .5, one with probability .6, and you don’t know which is which. Or
maybe one airline has good food with probability .5 and another with probability .6. Or one
journal accepts your academic papers with probabilty .5 and one with probability .6. Each
such story is a parable about the difficulty of learning from experience in the absence of large
data sets.

Remark on preconceptions: Let H be the event that Harper is the stronger candidate and
T the event that Harper closes more deals during the first 143 trials. Suppose that we think a
priori (based on resumes, interviews, the fact that Harper went to MIT, etc.) that
P (H) = .95. Since we know (approximately) that P (T |H) = .95 and P (T |Hc) = .05 we can
deduce (using the Bayesian analysis we did for disease trials) that P (H|T ) = .5. That is, even
after learning that Harper was behind after three years of data, we still think there is a .5
chance that Harper is stronger. Similarly the political partisans of Economics Planet, who
start out thinking one party is highly likely to be better for the economy, may not fully reverse
their opinions even after they learn that the opposing party did better over a 1000 year period.

Remark on smaller samples: We need N = 143 tosses for 95 percent confidence, but we
still learn something when N < 143. Suppose N = 1 for Harper and Heloise: so if exactly one
person closes a deal the first week, we give the job to that person; otherwise we toss a fair coin
to see who gets the job. In this case, one can show that the stronger candidate gets the job
with probability .55 (which is better than the .5 we’d have if we just guessed without
considering first week performance). With a year of data (52 tosses), the stronger candidate
wins with over 80 percent probability.
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Remark on grading: How meaningful are small differences in GPA? And does it make a
difference whether a university reports only a letter grade score as opposed to having a
continuum of score options? To think about this, consider two stories. At Normal University,
each student taking a class gets real number for a grade. One student’s grades are independent
normal random variables with mean 0 and variance 1. Another student’s are the same but
with mean .25. If both students take a class, then the difference between the (slightly)
stronger student’s score and the other student’s score has variance 2 and mean .25. If the
students take 32 courses, then the average difference has mean .25 and variance 2/32 = 1/16,
hence standard deviation .25. Thus the average score difference is one standard deviation
about zero, which means that it will be positive with probability about 5/6 (using rule of
thumb that standard normal is one standard deviation below the mean about 1/6 of the time).
So there is about a 5/6 chance the stronger student has a higher GPA.

At A Or B University the raw grades are the same as above, but the transcript simply records
an A if the raw grade is positive and a B if it is negative. So one student has an A with
probability .5 and the other has an A with probability about .6 (since a normal is less than a
quarter standard deviation above its mean about 60 percent of the time). On the 4 point scale
(A = 4 and B = 3) one student expects a 3.5 and one expects a 3.6. The GPA difference (after
N classes are taken) has standard deviation .7

√
N and expecation .1. Thus, after 49 classes,

the chance that the stronger student has the higher GPA is about the same as it woud be at
Normal University after 32 classes. Generally, the decision to report only the binary data (A
or B) means that it takes about 50 percent longer to distinguish between the two students (at
any specified accuracy level).

Remark on baseball: A baseball player might have over 500 at bats during a season. So
(based on results from this problem) it is possible to distinguish between a .400 hitter and a
.500 with 95 percent probability after less than a third of a season. But with one season worth
of data, you cannot distinguish (with 95 percent probability) between a .253 hitter and a .286
hitter. These are the batting averages corresponding to 25th and 75th percentile players
according to https://www.fangraphs.com/library/statistic-percentile-charts. Does
this disturb any baseball fans in this course?
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