
Expectation, covariance, binomial, Poisson

18.600 Problem Set 4, due March 16

Welcome to your fourth 18.600 problem set! The interesting topics we have discussed in
lecture include the linearity of expectation, the bilinearity of covariance, and the notion of utility
as used in economics. (Under certain “rationality” assumptions everyone has a utility function
whose expectation they seek to maximize.) We will see in this problem set how these ideas play
a role in some important (though perhaps overly simplistic) theories from finance (MPT and
CAPM). We’ll also have a few problems about binomial and Poisson random variables (keep
thinking about those!) and a chance to learn about Siegel’s paradox.

Please stop by my weekly office hours (2-249, Wednesday 3 to 5) for discussion.

A. FROM TEXTBOOK CHAPTER FOUR:

1. Problem 23: You have $1000, and a certain commodity presently sells $2 per ounce.
Suppose that after one week the commodity will sell for either $1 or $4 an ounce, with
these two possibilities being equally likely.

(a) If your objective is to maximize the expected amount of money that you possess at
the end of the week, what strategy should you employ?

(b) If your objective is to maximize the expected amount of the commodity that you
possess at the end of the week, what strategy should you employ?

Remark: Look up Siegel’s paradox. It’s pretty interesting.
http://mindyourdecisions.com/blog/2012/03/15/siegels-paradox-about-

exchange-rates/

B. On ACT Planet, Jack is preparing to take a test called the Math ACT. Jack knows his stuff
but is error prone under pressure, and because of this he only gets the right answer 85 percent
of the time. His success probability is the same for all problems (no matter how hard they are
for others) and his outcomes are independent from one problem to another. If he gets his
expected 51 out of 60 answers correct, it comes to a Math ACT score of 30. (On ACT planet,
the score conversion table is the same each time the test is given.)

Jack wants to attend the prestigious “Thirty Four or Higher University” (known as TFOHU)
for which he needs a 34 on the Math ACT, which requires at least 55 out of 60 correct.
Fortunately, the university only requires that he obtain that score once. He is not required to
report scores that fall below the treshold. Jack decides to invest the time and money to take
the exam 12 times. Assuming Jack’s abilities remain constant, what is the probability that he
gets a sufficiently high score (i.e., at least 55 correct answers) at least once? Give both an
algebraic expression and an approximate percentage. (An online calculator like
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http://stattrek.com/online-calculator/binomial.aspx may help you compute the
numerical value.)

C. Suppose that during each given minute there is a 10−6 probability that there is an accident
at a particular intersection (independently of all other minutes). Using the approximation of
500, 000 minutes per year, we expect to see .5 accidents per year on average. One year
somebody proposes to install a new kind of stoplight to reduce accidents. You believe a priori
that there is a 1/4 chance that the new stoplight is effective, in which case it will reduce the
accident rate by fifty percent, and a 3/4 chance it will have no effect. The new stoplight is
installed and during the next two years there are no accidents. Using Poisson approximations,
compute your updated estimate of the probability that the light is effective.

Remark: It is often hard to tell whether preventative measures against rare events are having
an effect. With twenty years of data we might be more confident, but by that point accident
rates may have changed for other reasons (e.g., self driving cars). On the other hand the k! in
the Poisson denominator means that large numbers are extremely unlikely. If we suddenly see
10 accidents in one year, we should seriously question our assumption that the number is
Poisson with λ = 1/2 or λ = 1/4.

D. Your friend plans to tie one end of a carbon nanotube rope to the moon and use the other
to pull a system of power generators around the earth. Your friend somehow convinces you
that with probability p = 10−12 this scheme will solve the world’s energy problems and make
your friend af profit of $1012. Your friend needs a dollar for postage to submit a patent
application and promises you the entire future profit in exchange for the dollar. How much net
profit do you expect to make (ignoring interest, taxes, etc.)? What is the variance (in
dollar-squared units) of your profit? How about the standard deviation (in dollar units)?

E. Larry the Very Subprime Lender gives loans of size $10,000. In 25 percent of cases, the
borrower pays back the loan quickly with no interest or fees. In 50 percent of cases, the
borrower disappears (moves away, declares bankruptcy, dies) without paying anything. In 25
percent of cases, the borrower pays back the loan slowly and — after years of ballooning
interest payments, hefty fees, etc. — pays Larry a total of $100,000. However, in this scenario,
Larry has to give $60,000 to third parties (repo services, foreclosure lawyers, eviction teams,
bill collectors, etc.) in order to get the borrower to pay the $100,000. Compute the following:

(a) The expectation and variance of the net amount of profit Larry makes from each loan
(after subtracting collection expenses and the initial $10,000 outlay).

(b) The expectation and variance of the net amount a given borrower ends up paying (i.e.,
amount paid minus amount borrowed).

Note: You might have some ethical concerns with Larry’s business model. You can google
payday loans (read the Wikipedia article, say) if you want a more realistic discussion of the
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legal and moral issues involved in lending to populations with high default risk.

F. Define the covariance Cov(X,Y ) = E[XY ]− E[X]E[Y ]. Define the corelation between X
and Y to be Cov(X,Y )/

√
Var(X)Var(Y ). One can show that the correlation between any two

random variables is always between −1 and 1. Very roughly speaking, the correlation is high
(i.e., close to 1) if X tends to be high when Y is high and tends to be low when Y is low.

1. Check that Cov(X,X) = Var(X), that Cov(X,Y ) = Cov(Y,X), and that Cov(·, ·) is a
bilinear function of its arguments. That is, if one fixes one argument then it is a linear
function of the other. For example, if we fix the second argument then for real constants
a and b we have Cov(aX + bY, Z) = aCov(X,Z) + bCov(Y,Z).

2. If Cov(Xi, Xj) = ij, find Cov(X1 −X2, X3 − 2X4).

3. If Cov(Xi, Xj) = ij, find Var(X1 + 2X2 + 3X3).

4. Suppose that V and X1, X2, . . . , Xn are random variables, that Var(V ) = 1, that
Cov(Xi, V ) = bi for each i and that Cov(Xi, Xj) = ci,j for each pair i, j, where bi (for
1 ≤ i ≤ n) and ci,j (for 1 ≤ i, j ≤ n) are known constants. Suppose for some fixed
constants a1, a2, . . . , an, we write X =

∑
aiXi. Then demonstrate the following:

(a) Cov(X,V ) =
∑n

i=1 aibi

(b) Var(X) =
∑n

i=1

∑n
j=1 aici,jaj .

(c) The correlation between X and V is
∑

aibi√∑
aici,jaj

.

With some calculus and linear algebra (which I won’t make you do) you can use the
above to find a choice of a1, a2, . . . , an that maximizes the correlation between X and V .

Remark: Many university rating systems (and clickbaity lists like “top ten cities for singles”
or “best companies to work for”) are constructed using a weighted sum X of measurements Xi

each believed to be correlated with some (hard to define) overall value V . For example, US
News measures what fraction of alumni donate, how much professors are paid, what fraction of
faculty have PhDs, what fraction of students were top ten percent in high school, etc. In each
case, the measured quantity is not something students necessarily care about for its own sake
— rather, it is believed to be correlated with things they care about. The QS World University
Rankings (where MIT is first, just saying) use a weighted sum of six different quantities
(citations per faculty, academic and employer reputation, etc.)

How well these systems work is debatable. One problem is that rankings may depend heavily
on the choice of measured quantities (represented by Xi) and the choice of weights (the ai).
These choices may appear arbitrary and ad hoc from the outside, and can differ greatly from
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one ranking system to another. Another problem is that even if we pretend there is a quantity
V that represents overall value, and even if we have defined a rating X such that the
correlation between and X and V is high (say .8) across all universities, it is not clear that the
correlation remains high if we restrict attention to (say) the top 20 universities. Incidentally,
US News also ranks states. Massachusetts was number one in 2017 but dropped to 8th place
in 2018. We’re now behind Iowa, Minnesota, Utah, North Dakota, New Hampshire,
Washington, and Nebraska. I wouldn’t lose too much sleep over this, but perhaps we really
ought to give Iowa a try.

G. Suppose n people throw their hats in a pile, the hats are randomly shuffled and returned,
one to each person. Let N be the number of people who get their own hat. Let M be the
number of people who are part of a two person pair (a, b) where a gets b’s hat b gets a’s hat.
In other words, M is the number of people who don’t get their own hat but do get the hat of
the person who got their hat. (You can observe that M is even with probability one.) Compute
E[M ], E[N ], E[MN ] and Cov[M,N ]. Hint: use indicator variables and linearity of
expectation.

H. Instead of maximizing her expected wealth E[W ], Jill maximizes E[U(W )] where
U(x) = −(x− x0)2 and x0 is a large positive number. That is, Jill has a quadratic utility
function. (It may seem odd that Jill’s utility declines with wealth once wealth exceeds x0. Let
us assume x0 is large enough so that this is unlikely.) Jill currently has W0 dollars. You
propose to sample a random variable X (with mean µ and variance σ2) and to give her X
dollars (she will lose money if X is negative) so that her new wealth becomes W = W0 +X.

1. Show that E[U(W )] depends on µ and σ2 (but not on any other information about the
probability distribution of X) and compute E[U(W )] as a function of x0,W0, µ, σ

2.

2. Show that given µ, Jill would prefer for σ2 to be as small as possible. (One sometimes
refers to σ as risk and says that Jill is risk averse.)

3. Suppose that X =
∑n

i=1 aiXi where ai are fixed constants and the Xi are random
variables with E[Xi] = µi and Cov[Xi, Xj ] = σij . Show that in this case E[U(W )]
depends only on the µi and the σij (but not on any other information about the joint
probability distributions of the Xi) and compute E[U(W )]. Hint: first compute the
mean and variance of X.

Remark: We conclude (assuming quadratic utility) that portfolio builders care only about
expectations and covariances of items in their portfolio. This idea underlies the (1990 Nobel
Prize Winning) Modern Portfolio Theory (MPT) and Capital Asset Pricing Model (CAPM).
Before these theories, it was believed that when the variance of an asset return is high, the
expected return should be higher as well (the risk premium) because otherwise people wouldn’t
buy risky assets. MPT and CAPM predict that one gets a risk premium for systemic risk (the
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part of the variance explained by correlation with the market portfolio, defined to be the sum
total of all risky assets) but not for idiosyncratic risk (explosure to which can be reduced by
diversification). These theories also predict that everyone’s optimal investment strategy is to
put some (investor-dependent) fraction of their money in a risk free asset and the remainder in
the market portfolio (which we think of as a giant index fund). You can google MPT and
CAPM to read about how well or poorly these theories match reality.

Remark: People often say utility functions should be strictly concave (negative second
derivative) to explain risk aversion... but is that necessarily true? Here is a naive story about
charitable giving. Suppose your utility function is given by your own health/comfort plus a
constant c times the sum of the health/comfort of all other humans on the planet. For
example, if c = .01, then you are mostly selfish, but you would be willing to give up a comfort
for yourself if it would enable more than 100 strangers to enjoy the same comfort. You’d give
up your life if you could save more than 100 other lives. Utilitarians might theorize that it is a
good to thing that c > 0 (so that we help others when we can make a big difference) but
maybe also a good thing that c < 1 (since a little selfishness might be efficient in practice). As
you acquire more money, there may come some point at which you believe that the marginal
value of another dollar to you (in added health/comfort) is less than c times the amount a
dollar donated to a global charity with relatively high expected impact (like those profiled at
givewell.org) would increase health/comfort for others. After that point, in principle you
should donate all of your additional money to charity. If this is indeed your plan, then your
utility function might be very close to linear for a long time after that point, since the amount
of good you do in a huge global effort is roughly linear in the amount you give.

Remark: Some economists say that in reality charitable giving should be modeled as a
consumptive good (that happens to have positive externality — google “warm glow giving”)
that has to compete with other consumptive goods among even the very wealthy. This point
of view might predict actual behavior better than what I sketched above.

Remark: A “rational” person (in the economic sense) has a utility function and a subjective
probability measure, and makes decisions in order to optimize expected utility. A group of
people, each of whom is rational in this sense, may be decidely irrational as a group. Arrow’s
impossibility theorem (look it up) states that (under any reasonable voting scheme) a
democratic group of people may prefer A to B and B to C and C to A. Political parties,
companies, and entire countries can all be “irrational” to a greater extent than their individual
members.
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