18.600: Lecture 39 Review: practice problems

Scott Sheffield

MIT

 Alice and Bob share a home with a bathroom, a walk-in closet, and 2 towels.

- Alice and Bob share a home with a bathroom, a walk-in closet, and 2 towels.
- Each morning a fair coin decide which of the two showers first.

- Alice and Bob share a home with a bathroom, a walk-in closet, and 2 towels.
- Each morning a fair coin decide which of the two showers first.
- After Bob showers, if there is at least one towel in the bathroom, Bob uses the towel and leaves it draped over a chair in the walk-in closet. If there is no towel in the bathroom, Bob grumpily goes to the walk-in closet, dries off there, and leaves the towel in the walk-in closet

- Alice and Bob share a home with a bathroom, a walk-in closet, and 2 towels.
- Each morning a fair coin decide which of the two showers first.
- After Bob showers, if there is at least one towel in the bathroom, Bob uses the towel and leaves it draped over a chair in the walk-in closet. If there is no towel in the bathroom, Bob grumpily goes to the walk-in closet, dries off there, and leaves the towel in the walk-in closet
- When Alice showers, she first checks to see if at least one towel is present. If a towel is present, she dries off with that towel and returns it to the bathroom towel rack. Otherwise, she cheerfully retrieves both towels from the walk-in closet, then showers, dries off and leaves both towels on the rack.

- Alice and Bob share a home with a bathroom, a walk-in closet, and 2 towels.
- Each morning a fair coin decide which of the two showers first.
- After Bob showers, if there is at least one towel in the bathroom, Bob uses the towel and leaves it draped over a chair in the walk-in closet. If there is no towel in the bathroom, Bob grumpily goes to the walk-in closet, dries off there, and leaves the towel in the walk-in closet
- When Alice showers, she first checks to see if at least one towel is present. If a towel is present, she dries off with that towel and returns it to the bathroom towel rack. Otherwise, she cheerfully retrieves both towels from the walk-in closet, then showers, dries off and leaves both towels on the rack.
- Problem: describe towel-distribution evolution as a Markov chain and determine (over the long term) on what fraction of days Bob emerges from the shower to find no towel.

► Let state 0, 1, 2 denote bathroom towel number.

- ▶ Let state 0, 1, 2 denote bathroom towel number.
- Shower state change Bob: $2 \rightarrow 1$, $1 \rightarrow 0$, $0 \rightarrow 0$.

- ▶ Let state 0, 1, 2 denote bathroom towel number.
- Shower state change Bob: $2 \rightarrow 1$, $1 \rightarrow 0$, $0 \rightarrow 0$.
- Shower state change Alice: $2 \rightarrow 2$, $1 \rightarrow 1$, $0 \rightarrow 2$.

- ▶ Let state 0, 1, 2 denote bathroom towel number.
- Shower state change Bob: $2 \rightarrow 1$, $1 \rightarrow 0$, $0 \rightarrow 0$.
- Shower state change Alice: $2 \rightarrow 2$, $1 \rightarrow 1$, $0 \rightarrow 2$.
- Morning state change AB: $2 \rightarrow 1$, $1 \rightarrow 0$, $0 \rightarrow 1$.

- ▶ Let state 0, 1, 2 denote bathroom towel number.
- Shower state change Bob: $2 \rightarrow 1$, $1 \rightarrow 0$, $0 \rightarrow 0$.
- Shower state change Alice: $2 \rightarrow 2$, $1 \rightarrow 1$, $0 \rightarrow 2$.
- Morning state change AB: $2 \rightarrow 1$, $1 \rightarrow 0$, $0 \rightarrow 1$.
- Morning state change BA: $2 \rightarrow 1$, $1 \rightarrow 2$, $0 \rightarrow 2$.

- ▶ Let state 0, 1, 2 denote bathroom towel number.
- Shower state change Bob: $2 \rightarrow 1$, $1 \rightarrow 0$, $0 \rightarrow 0$.
- Shower state change Alice: $2 \rightarrow 2$, $1 \rightarrow 1$, $0 \rightarrow 2$.
- Morning state change AB: $2 \rightarrow 1$, $1 \rightarrow 0$, $0 \rightarrow 1$.
- Morning state change BA: $2 \rightarrow 1$, $1 \rightarrow 2$, $0 \rightarrow 2$.
- Markov chain matrix:

$$M = \begin{pmatrix} 0 & .5 & .5 \\ .5 & 0 & .5 \\ 0 & 1 & 0 \end{pmatrix}$$

- ▶ Let state 0, 1, 2 denote bathroom towel number.
- Shower state change Bob: $2 \rightarrow 1$, $1 \rightarrow 0$, $0 \rightarrow 0$.
- Shower state change Alice: $2 \rightarrow 2$, $1 \rightarrow 1$, $0 \rightarrow 2$.
- Morning state change AB: $2 \rightarrow 1$, $1 \rightarrow 0$, $0 \rightarrow 1$.
- Morning state change BA: $2 \rightarrow 1$, $1 \rightarrow 2$, $0 \rightarrow 2$.
- Markov chain matrix:

$$M = \begin{pmatrix} 0 & .5 & .5 \\ .5 & 0 & .5 \\ 0 & 1 & 0 \end{pmatrix}$$

▶ Row vector π such that $\pi M = \pi$ (with components of π summing to one) is $\begin{pmatrix} 2 \\ 9 & \frac{4}{9} & \frac{1}{3} \end{pmatrix}$.

- ▶ Let state 0, 1, 2 denote bathroom towel number.
- Shower state change Bob: $2 \rightarrow 1$, $1 \rightarrow 0$, $0 \rightarrow 0$.
- Shower state change Alice: $2 \rightarrow 2$, $1 \rightarrow 1$, $0 \rightarrow 2$.
- Morning state change AB: $2 \rightarrow 1$, $1 \rightarrow 0$, $0 \rightarrow 1$.
- Morning state change BA: $2 \rightarrow 1$, $1 \rightarrow 2$, $0 \rightarrow 2$.
- Markov chain matrix:

$$M = \begin{pmatrix} 0 & .5 & .5 \\ .5 & 0 & .5 \\ 0 & 1 & 0 \end{pmatrix}$$

- ▶ Row vector π such that $\pi M = \pi$ (with components of π summing to one) is $\begin{pmatrix} 2 \\ 9 & \frac{4}{9} & \frac{1}{3} \end{pmatrix}$.
- ▶ Bob finds no towel only if morning starts in state zero and Bob goes first. Over long term Bob finds no towel ²/₉ × ¹/₂ = ¹/₉ fraction of the time.

Suppose that $X_1, X_2, X_3, ...$ is an infinite sequence of independent random variables which are each equal to 1 with probability 1/2 and -1 with probability 1/2. Let $Y_n = \sum_{i=1}^n X_i$. Answer the following:

► What is the probability that Y_n reaches -25 before the first time that it reaches 5?

Suppose that $X_1, X_2, X_3, ...$ is an infinite sequence of independent random variables which are each equal to 1 with probability 1/2 and -1 with probability 1/2. Let $Y_n = \sum_{i=1}^n X_i$. Answer the following:

- ► What is the probability that Y_n reaches -25 before the first time that it reaches 5?
- ► Use the central limit theorem to approximate the probability that Y₉₀₀₀₀₀₀ is greater than 6000.

Optional stopping, martingales, central limit theorem — answers

▶
$$p_{-25}25 + p_55 = 0$$
 and $p_{-25} + p_5 = 1$. Solving, we obtain $p_{-25} = 1/6$ and $p_5 = 5/6$.

Optional stopping, martingales, central limit theorem — answers

- ▶ $p_{-25}25 + p_55 = 0$ and $p_{-25} + p_5 = 1$. Solving, we obtain $p_{-25} = 1/6$ and $p_5 = 5/6$.
- One standard deviation is $\sqrt{9000000} = 3000$. We want probability to be 2 standard deviations above mean. Should be about $\int_2^\infty \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$.

•
$$Y_n = \sum_{i=1}^n iX_i$$

•
$$Y_n = \sum_{i=1}^n iX_i$$

• $Y_n = \sum_{i=1}^n X_i^2 - n$

•
$$Y_n = \sum_{i=1}^n iX_i$$

• $Y_n = \sum_{i=1}^n X_i^2 - r$
• $Y_n = \prod_{i=1}^n (1 + X_i)$

$$\begin{array}{l} \blacktriangleright \quad Y_n = \sum_{i=1}^{n} iX_i \\ \blacktriangleright \quad Y_n = \sum_{i=1}^{n} X_i^2 - n \\ \blacktriangleright \quad Y_n = \prod_{i=1}^{n} (1 + X_i) \\ \vdash \quad Y_n = \prod_{i=1}^{n} (X_i - 1) \end{array}$$

► Yes, no, yes, no.

Let X be a normal random variable with mean 0 and variance
 1. Compute the following (you may use the function
 Φ(a) := ∫^a_{-∞} 1/√2π e^{-x²/2} dx in your answers):

Let X be a normal random variable with mean 0 and variance
 1. Compute the following (you may use the function
 Φ(a) := ∫^a_{-∞} 1/√2π e^{-x²/2} dx in your answers):
 E[e^{3X-3}].

Let X be a normal random variable with mean 0 and variance 1. Compute the following (you may use the function Φ(a) := ∫^a_{-∞} 1/√2π e^{-x²/2} dx in your answers):
 E[e^{3X-3}].
 E[e^X1_{X∈(a,b)}] for fixed constants a < b.

Calculations like those needed for Black-Scholes derivation – answers

$$\begin{split} E[e^{3X-3}] &= \int_{-\infty}^{\infty} e^{3x-3} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx \\ &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2-6x+6}{2}} dx \\ &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2-6x+9}{2}} e^{3/2} dx \\ &= e^{3/2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-3)^2}{2}} dx \\ &= e^{3/2} \end{split}$$

Calculations like those needed for Black-Scholes derivation – answers

$$\begin{split} E[e^X 1_{X \in (a,b)}] &= \int_a^b e^x \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx \\ &= \int_a^b e^x \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \\ &= \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2-2x+1-1}{2}} dx \\ &= e^{1/2} \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-1)^2}{2}} dx \\ &= e^{1/2} \int_{a-1}^{b-1} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \\ &= e^{1/2} (\Phi(b-1) - \Phi(a-1)) \end{split}$$

UNDERGRADUATE:

- (a) 18.615 Introduction to Stochastic Processes
- (b) 18.642 Topics in Math with Applications in Finance
- (c) 18.650 Statistics for Applications
- (d) PDEs, real and complex analysis, Fourier analysis, matrix
 - methods, random matrices, dynamics, randomized algorithms...

UNDERGRADUATE:

- (a) 18.615 Introduction to Stochastic Processes
- (b) 18.642 Topics in Math with Applications in Finance
- (c) 18.650 Statistics for Applications
- (d) PDEs, real and complex analysis, Fourier analysis, matrix methods, random matrices, dynamics, randomized algorithms...

GRADUATE LEVEL PROBABILITY

- (a) 18.175 Theory of Probability
- (b) 18.176 Stochastic calculus
- (c) 18.177 Topics in stochastic processes (topics vary —

repeatable, offered twice next year)

UNDERGRADUATE:

- (a) 18.615 Introduction to Stochastic Processes
- (b) 18.642 Topics in Math with Applications in Finance
- (c) 18.650 Statistics for Applications
- (d) PDEs, real and complex analysis, Fourier analysis, matrix methods, random matrices, dynamics, randomized algorithms...

GRADUATE LEVEL PROBABILITY

- (a) 18.175 Theory of Probability
- (b) 18.176 Stochastic calculus
- (c) 18.177 Topics in stochastic processes (topics vary repeatable, offered twice next year)

GRADUATE LEVEL STATISTICS

- (a) 18.655 Mathematical statistics
- (b) 18.657 Topics in statistics (topics vary topic this year was machine learning; repeatable)

UNDERGRADUATE:

- (a) 18.615 Introduction to Stochastic Processes
- (b) 18.642 Topics in Math with Applications in Finance
- (c) 18.650 Statistics for Applications
- (d) PDEs, real and complex analysis, Fourier analysis, matrix methods, random matrices, dynamics, randomized algorithms...

GRADUATE LEVEL PROBABILITY

- (a) 18.175 Theory of Probability
- (b) 18.176 Stochastic calculus
- (c) 18.177 Topics in stochastic processes (topics vary repeatable, offered twice next year)

GRADUATE LEVEL STATISTICS

- (a) 18.655 Mathematical statistics
- (b) 18.657 Topics in statistics (topics vary topic this year was machine learning; repeatable)

OUTSIDE OF MATH DEPARTMENT

- (a) Look up MIT minor in statistics and data sciences.
- (b) Courses by title keywords: probability, statistics, inference, econometrics, data mining, stochastic, machine learning, time series, Markov, finance, analytics, biostatistics, modeling....

 Considering previous generations of mathematically inclined MIT students, and adopting a frequentist point of view...

- Considering previous generations of mathematically inclined MIT students, and adopting a frequentist point of view...
- > You will probably do some important things with your lives.

- Considering previous generations of mathematically inclined MIT students, and adopting a frequentist point of view...
- You will probably do some important things with your lives.
- I hope your probabilistic shrewdness serves you well.

- Considering previous generations of mathematically inclined MIT students, and adopting a frequentist point of view...
- You will probably do some important things with your lives.
- I hope your probabilistic shrewdness serves you well.
- Thinking more short term...

- Considering previous generations of mathematically inclined MIT students, and adopting a frequentist point of view...
- You will probably do some important things with your lives.
- I hope your probabilistic shrewdness serves you well.
- Thinking more short term...
- Happy exam day!

- Considering previous generations of mathematically inclined MIT students, and adopting a frequentist point of view...
- You will probably do some important things with your lives.
- I hope your probabilistic shrewdness serves you well.
- Thinking more short term...
- Happy exam day!
- And may the odds be ever in your favor.