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Moment generating functions

I Let X be a random variable.

I The moment generating function of X is defined by
M(t) = MX (t) := E [etX ].

I When X is discrete, can write M(t) =
∑

x e
txpX (x). So M(t)

is a weighted average of countably many exponential
functions.

I When X is continuous, can write M(t) =
∫∞
−∞ etx f (x)dx . So

M(t) is a weighted average of a continuum of exponential
functions.

I We always have M(0) = 1.

I If b > 0 and t > 0 then
E [etX ] ≥ E [etmin{X ,b}] ≥ P{X ≥ b}etb.

I If X takes both positive and negative values with positive
probability then M(t) grows at least exponentially fast in |t|
as |t| → ∞.
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Moment generating functions actually generate moments

I Let X be a random variable and M(t) = E [etX ].

I Then M ′(t) = d
dtE [etX ] = E

[
d
dt (etX )

]
= E [XetX ].

I in particular, M ′(0) = E [X ].

I Also M ′′(t) = d
dtM

′(t) = d
dtE [XetX ] = E [X 2etX ].

I So M ′′(0) = E [X 2]. Same argument gives that nth derivative
of M at zero is E [X n].

I Interesting: knowing all of the derivatives of M at a single
point tells you the moments E [X k ] for all integer k ≥ 0.

I Another way to think of this: write
etX = 1 + tX + t2X 2

2! + t3X 3

3! + . . ..

I Taking expectations gives
E [etX ] = 1 + tm1 + t2m2

2! + t3m3
3! + . . ., where mk is the kth

moment. The kth derivative at zero is mk .
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Moment generating functions for independent sums

I Let X and Y be independent random variables and
Z = X + Y .

I Write the moment generating functions as MX (t) = E [etX ]
and MY (t) = E [etY ] and MZ (t) = E [etZ ].

I If you knew MX and MY , could you compute MZ?

I By independence, MZ (t) = E [et(X+Y )] = E [etX etY ] =
E [etX ]E [etY ] = MX (t)MY (t) for all t.

I In other words, adding independent random variables
corresponds to multiplying moment generating functions.
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Moment generating functions for sums of i.i.d. random
variables

I We showed that if Z = X + Y and X and Y are independent,
then MZ (t) = MX (t)MY (t)

I If X1 . . .Xn are i.i.d. copies of X and Z = X1 + . . .+ Xn then
what is MZ?

I Answer: Mn
X . Follows by repeatedly applying formula above.

I This a big reason for studying moment generating functions.
It helps us understand what happens when we sum up a lot of
independent copies of the same random variable.
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Other observations

I If Z = aX then can I use MX to determine MZ?

I Answer: Yes. MZ (t) = E [etZ ] = E [etaX ] = MX (at).

I If Z = X + b then can I use MX to determine MZ?

I Answer: Yes. MZ (t) = E [etZ ] = E [etX+bt ] = ebtMX (t).

I Latter answer is the special case of MZ (t) = MX (t)MY (t)
where Y is the constant random variable b.
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Examples

I Let’s try some examples. What is MX (t) = E [etX ] when X is
binomial with parameters (p, n)? Hint: try the n = 1 case
first.

I Answer: if n = 1 then MX (t) = E [etX ] = pet + (1− p)e0. In
general MX (t) = (pet + 1− p)n.

I What if X is Poisson with parameter λ > 0?

I Answer: MX (t) = E [etx ] =
∑∞

n=0
etne−λλn

n! =

e−λ
∑∞

n=0
(λet)n

n! = e−λeλe
t

= exp[λ(et − 1)].

I We know that if you add independent Poisson random
variables with parameters λ1 and λ2 you get a Poisson
random variable of parameter λ1 + λ2. How is this fact
manifested in the moment generating function?
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More examples: normal random variables

I What if X is normal with mean zero, variance one?

I MX (t) = 1√
2π

∫∞
−∞ etxe−x

2/2dx =

1√
2π

∫∞
−∞ exp{− (x−t)2

2 + t2

2 }dx = et
2/2.

I What does that tell us about sums of i.i.d. copies of X?

I If Z is sum of n i.i.d. copies of X then MZ (t) = ent
2/2.

I What is MZ if Z is normal with mean µ and variance σ2?

I Answer: Z has same law as σX + µ, so
MZ (t) = M(σt)eµt = exp{σ2t2

2 + µt}.
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More examples: exponential random variables

I What if X is exponential with parameter λ > 0?

I MX (t) =
∫∞
0 etxλe−λxdx = λ

∫∞
0 e−(λ−t)xdx = λ

λ−t .

I What if Z is a Γ distribution with parameters λ > 0 and
n > 0?

I Then Z has the law of a sum of n independent copies of X .
So MZ (t) = MX (t)n =

(
λ
λ−t
)n

.

I Exponential calculation above works for t < λ. What happens
when t > λ? Or as t approaches λ from below?

I MX (t) =
∫∞
0 etxλe−λxdx = λ

∫∞
0 e−(λ−t)xdx =∞ if t ≥ λ.
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More examples: existence issues

I Seems that unless fX (x) decays superexponentially as x tends
to infinity, we won’t have MX (t) defined for all t.

I What is MX if X is standard Cauchy, so that fX (x) = 1
π(1+x2)

.

I Answer: MX (0) = 1 (as is true for any X ) but otherwise
MX (t) is infinite for all t 6= 0.

I Informal statement: moment generating functions are not
defined for distributions with fat tails.
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Characteristic functions

I Let X be a random variable.

I The characteristic function of X is defined by
φ(t) = φX (t) := E [e itX ]. Like M(t) except with i thrown in.

I Recall that by definition e it = cos(t) + i sin(t).

I Characteristic functions are similar to moment generating
functions in some ways.

I For example, φX+Y = φXφY , just as MX+Y = MXMY .

I And φaX (t) = φX (at) just as MaX (t) = MX (at).

I And if X has an mth moment then E [Xm] = imφ
(m)
X (0).

I But characteristic functions have a distinct advantage: they
are always well defined for all t even if fX decays slowly.
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Perspective

I In later lectures, we will see that one can use moment
generating functions and/or characteristic functions to prove
the so-called weak law of large numbers and central limit
theorem.

I Proofs using characteristic functions apply in more generality,
but they require you to remember how to exponentiate
imaginary numbers.

I Moment generating functions are central to so-called large
deviation theory and play a fundamental role in statistical
physics, among other things.

I Characteristic functions are Fourier transforms of the
corresponding distribution density functions and encode
“periodicity” patterns. For example, if X is integer valued,
φX (t) = E [e itX ] will be 1 whenever t is a multiple of 2π.
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Continuity theorems

I Let X be a random variable and Xn a sequence of random
variables.

I We say that Xn converge in distribution or converge in law
to X if limn→∞ FXn(x) = FX (x) at all x ∈ R at which FX is
continuous.

I Lévy’s continuity theorem (see Wikipedia): if
limn→∞ φXn(t) = φX (t) for all t, then Xn converge in law to
X .

I Moment generating analog: if moment generating
functions MXn(t) are defined for all t and n and
limn→∞MXn(t) = MX (t) for all t, then Xn converge in law to
X .
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