18.600: Lecture 23
 Conditional probability, order statistics, expectations of sums

Scott Sheffield

MIT

Outline

Conditional probability densities

Order statistics

Expectations of sums

Outline

Conditional probability densities

Order statistics

Expectations of sums

Conditional distributions

- Let's say X and Y have joint probability density function $f(x, y)$.

Conditional distributions

- Let's say X and Y have joint probability density function $f(x, y)$.
- We can define the conditional probability density of X given that $Y=y$ by $f_{X \mid Y=y}(x)=\frac{f(x, y)}{f_{Y}(y)}$.

Conditional distributions

- Let's say X and Y have joint probability density function $f(x, y)$.
- We can define the conditional probability density of X given that $Y=y$ by $f_{X \mid Y=y}(x)=\frac{f(x, y)}{f_{Y}(y)}$.
- This amounts to restricting $f(x, y)$ to the line corresponding to the given y value (and dividing by the constant that makes the integral along that line equal to 1).

Conditional distributions

- Let's say X and Y have joint probability density function $f(x, y)$.
- We can define the conditional probability density of X given that $Y=y$ by $f_{X \mid Y=y}(x)=\frac{f(x, y)}{f_{Y}(y)}$.
- This amounts to restricting $f(x, y)$ to the line corresponding to the given y value (and dividing by the constant that makes the integral along that line equal to 1).
- This definition assumes that $f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x<\infty$ and $f_{Y}(y) \neq 0$. Is that safe to assume?

Conditional distributions

- Let's say X and Y have joint probability density function $f(x, y)$.
- We can define the conditional probability density of X given that $Y=y$ by $f_{X \mid Y=y}(x)=\frac{f(x, y)}{f_{Y}(y)}$.
- This amounts to restricting $f(x, y)$ to the line corresponding to the given y value (and dividing by the constant that makes the integral along that line equal to 1).
- This definition assumes that $f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x<\infty$ and $f_{Y}(y) \neq 0$. Is that safe to assume?
- Usually...

Remarks: conditioning on a probability zero event

- Our standard definition of conditional probability is $P(A \mid B)=P(A B) / P(B)$.

Remarks: conditioning on a probability zero event

- Our standard definition of conditional probability is $P(A \mid B)=P(A B) / P(B)$.
- Doesn't make sense if $P(B)=0$. But previous slide defines "probability conditioned on $Y=y$ " and $P\{Y=y\}=0$.

Remarks: conditioning on a probability zero event

- Our standard definition of conditional probability is $P(A \mid B)=P(A B) / P(B)$.
- Doesn't make sense if $P(B)=0$. But previous slide defines "probability conditioned on $Y=y$ " and $P\{Y=y\}=0$.
- When can we (somehow) make sense of conditioning on probability zero event?

Remarks: conditioning on a probability zero event

- Our standard definition of conditional probability is $P(A \mid B)=P(A B) / P(B)$.
- Doesn't make sense if $P(B)=0$. But previous slide defines "probability conditioned on $Y=y$ " and $P\{Y=y\}=0$.
- When can we (somehow) make sense of conditioning on probability zero event?
- Tough question in general.

Remarks: conditioning on a probability zero event

- Our standard definition of conditional probability is $P(A \mid B)=P(A B) / P(B)$.
- Doesn't make sense if $P(B)=0$. But previous slide defines "probability conditioned on $Y=y$ " and $P\{Y=y\}=0$.
- When can we (somehow) make sense of conditioning on probability zero event?
- Tough question in general.
- Consider conditional law of X given that $Y \in(y-\epsilon, y+\epsilon)$. If this has a limit as $\epsilon \rightarrow 0$, we can call that the law conditioned on $Y=y$.

Remarks: conditioning on a probability zero event

- Our standard definition of conditional probability is $P(A \mid B)=P(A B) / P(B)$.
- Doesn't make sense if $P(B)=0$. But previous slide defines "probability conditioned on $Y=y$ " and $P\{Y=y\}=0$.
- When can we (somehow) make sense of conditioning on probability zero event?
- Tough question in general.
- Consider conditional law of X given that $Y \in(y-\epsilon, y+\epsilon)$. If this has a limit as $\epsilon \rightarrow 0$, we can call that the law conditioned on $Y=y$.
- Precisely, define
$F_{X \mid Y=y}(a):=\lim _{\epsilon \rightarrow 0} P\{X \leq a \mid Y \in(y-\epsilon, y+\epsilon)\}$.

Remarks: conditioning on a probability zero event

- Our standard definition of conditional probability is $P(A \mid B)=P(A B) / P(B)$.
- Doesn't make sense if $P(B)=0$. But previous slide defines "probability conditioned on $Y=y$ " and $P\{Y=y\}=0$.
- When can we (somehow) make sense of conditioning on probability zero event?
- Tough question in general.
- Consider conditional law of X given that $Y \in(y-\epsilon, y+\epsilon)$. If this has a limit as $\epsilon \rightarrow 0$, we can call that the law conditioned on $Y=y$.
- Precisely, define
$F_{X \mid Y=y}(a):=\lim _{\epsilon \rightarrow 0} P\{X \leq a \mid Y \in(y-\epsilon, y+\epsilon)\}$.
- Then set $f_{X \mid Y=y}(a)=F_{X \mid Y=y}^{\prime}(a)$. Consistent with definition from previous slide.

A word of caution

- Suppose X and Y are chosen uniformly on the semicircle $\left\{(x, y): x^{2}+y^{2} \leq 1, x \geq 0\right\}$. What is $f_{X \mid Y=0}(x)$?

A word of caution

- Suppose X and Y are chosen uniformly on the semicircle $\left\{(x, y): x^{2}+y^{2} \leq 1, x \geq 0\right\}$. What is $f_{X \mid Y=0}(x)$?
- Answer: $f_{X \mid Y=0}(x)=1$ if $x \in[0,1]$ (zero otherwise).

A word of caution

- Suppose X and Y are chosen uniformly on the semicircle $\left\{(x, y): x^{2}+y^{2} \leq 1, x \geq 0\right\}$. What is $f_{X \mid Y=0}(x)$?
- Answer: $f_{X \mid Y=0}(x)=1$ if $x \in[0,1]$ (zero otherwise).
- Let (θ, R) be (X, Y) in polar coordinates. What is $f_{X \mid \theta=0}(x)$?

A word of caution

- Suppose X and Y are chosen uniformly on the semicircle $\left\{(x, y): x^{2}+y^{2} \leq 1, x \geq 0\right\}$. What is $f_{X \mid Y=0}(x)$?
- Answer: $f_{X \mid Y=0}(x)=1$ if $x \in[0,1]$ (zero otherwise).
- Let (θ, R) be (X, Y) in polar coordinates. What is $f_{X \mid \theta=0}(x)$?
- Answer: $f_{X \mid \theta=0}(x)=2 x$ if $x \in[0,1]$ (zero otherwise).

A word of caution

- Suppose X and Y are chosen uniformly on the semicircle $\left\{(x, y): x^{2}+y^{2} \leq 1, x \geq 0\right\}$. What is $f_{X \mid Y=0}(x)$?
- Answer: $f_{X \mid Y=0}(x)=1$ if $x \in[0,1]$ (zero otherwise).
- Let (θ, R) be (X, Y) in polar coordinates. What is $f_{X \mid \theta=0}(x)$?
- Answer: $f_{X \mid \theta=0}(x)=2 x$ if $x \in[0,1]$ (zero otherwise).
- Both $\{\theta=0\}$ and $\{Y=0\}$ describe the same probability zero event. But our interpretation of what it means to condition on this event is different in these two cases.

A word of caution

- Suppose X and Y are chosen uniformly on the semicircle $\left\{(x, y): x^{2}+y^{2} \leq 1, x \geq 0\right\}$. What is $f_{X \mid Y=0}(x)$?
- Answer: $f_{X \mid Y=0}(x)=1$ if $x \in[0,1]$ (zero otherwise).
- Let (θ, R) be (X, Y) in polar coordinates. What is $f_{X \mid \theta=0}(x)$?
- Answer: $f_{X \mid \theta=0}(x)=2 x$ if $x \in[0,1]$ (zero otherwise).
- Both $\{\theta=0\}$ and $\{Y=0\}$ describe the same probability zero event. But our interpretation of what it means to condition on this event is different in these two cases.
- Conditioning on (X, Y) belonging to a $\theta \in(-\epsilon, \epsilon)$ wedge is very different from conditioning on (X, Y) belonging to a $Y \in(-\epsilon, \epsilon)$ strip.

Outline

Conditional probability densities

Order statistics

Expectations of sums

Outline

Conditional probability densities

Order statistics

Expectations of sums

Maxima: pick five job candidates at random, choose best

- Suppose I choose n random variables $X_{1}, X_{2}, \ldots, X_{n}$ uniformly at random on $[0,1]$, independently of each other.

Maxima: pick five job candidates at random, choose best

- Suppose I choose n random variables $X_{1}, X_{2}, \ldots, X_{n}$ uniformly at random on $[0,1]$, independently of each other.
- The n-tuple $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ has a constant density function on the n-dimensional cube $[0,1]^{n}$.

Maxima: pick five job candidates at random, choose best

- Suppose I choose n random variables $X_{1}, X_{2}, \ldots, X_{n}$ uniformly at random on $[0,1]$, independently of each other.
- The n-tuple $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ has a constant density function on the n-dimensional cube $[0,1]^{n}$.
- What is the probability that the largest of the X_{i} is less than a ?

Maxima: pick five job candidates at random, choose best

- Suppose I choose n random variables $X_{1}, X_{2}, \ldots, X_{n}$ uniformly at random on $[0,1]$, independently of each other.
- The n-tuple $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ has a constant density function on the n-dimensional cube $[0,1]^{n}$.
- What is the probability that the largest of the X_{i} is less than a ?
- ANSWER: a^{n}.

Maxima: pick five job candidates at random, choose best

- Suppose I choose n random variables $X_{1}, X_{2}, \ldots, X_{n}$ uniformly at random on $[0,1]$, independently of each other.
- The n-tuple $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ has a constant density function on the n-dimensional cube $[0,1]^{n}$.
- What is the probability that the largest of the X_{i} is less than a ?
- ANSWER: a^{n}.
- So if $X=\max \left\{X_{1}, \ldots, X_{n}\right\}$, then what is the probability density function of X ?

Maxima: pick five job candidates at random, choose best

- Suppose I choose n random variables $X_{1}, X_{2}, \ldots, X_{n}$ uniformly at random on $[0,1]$, independently of each other.
- The n-tuple $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ has a constant density function on the n-dimensional cube $[0,1]^{n}$.
- What is the probability that the largest of the X_{i} is less than a ?
- ANSWER: a^{n}.
- So if $X=\max \left\{X_{1}, \ldots, X_{n}\right\}$, then what is the probability density function of X ?
- Answer: $F_{X}(a)= \begin{cases}0 & a<0 \\ a^{n} & a \in[0,1] . \text { And } \\ 1 & a>1\end{cases}$ $f_{x}(a)=F_{X}^{\prime}(a)=n a^{n-1}$.

General order statistics

- Consider i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$ with continuous probability density f.

General order statistics

- Consider i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$ with continuous probability density f.
- Let $Y_{1}<Y_{2}<Y_{3} \ldots<Y_{n}$ be list obtained by sorting the X_{j}.

General order statistics

- Consider i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$ with continuous probability density f.
- Let $Y_{1}<Y_{2}<Y_{3} \ldots<Y_{n}$ be list obtained by sorting the X_{j}.
- In particular, $Y_{1}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ is the maximum.

General order statistics

- Consider i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$ with continuous probability density f.
- Let $Y_{1}<Y_{2}<Y_{3} \ldots<Y_{n}$ be list obtained by sorting the X_{j}.
- In particular, $Y_{1}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ is the maximum.
- What is the joint probability density of the Y_{i} ?

General order statistics

- Consider i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$ with continuous probability density f.
- Let $Y_{1}<Y_{2}<Y_{3} \ldots<Y_{n}$ be list obtained by sorting the X_{j}.
- In particular, $Y_{1}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ is the maximum.
- What is the joint probability density of the Y_{i} ?
- Answer: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=n!\prod_{i=1}^{n} f\left(x_{i}\right)$ if $x_{1}<x_{2} \ldots<x_{n}$, zero otherwise.

General order statistics

- Consider i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$ with continuous probability density f.
- Let $Y_{1}<Y_{2}<Y_{3} \ldots<Y_{n}$ be list obtained by sorting the X_{j}.
- In particular, $Y_{1}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ is the maximum.
- What is the joint probability density of the Y_{i} ?
- Answer: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=n!\prod_{i=1}^{n} f\left(x_{i}\right)$ if $x_{1}<x_{2} \ldots<x_{n}$, zero otherwise.
- Let $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ be the permutation such that $X_{j}=Y_{\sigma(j)}$

General order statistics

- Consider i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$ with continuous probability density f.
- Let $Y_{1}<Y_{2}<Y_{3} \ldots<Y_{n}$ be list obtained by sorting the X_{j}.
- In particular, $Y_{1}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ is the maximum.
- What is the joint probability density of the Y_{i} ?
- Answer: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=n!\prod_{i=1}^{n} f\left(x_{i}\right)$ if $x_{1}<x_{2} \ldots<x_{n}$, zero otherwise.
- Let $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ be the permutation such that $X_{j}=Y_{\sigma(j)}$
- Are σ and the vector $\left(Y_{1}, \ldots, Y_{n}\right)$ independent of each other?

General order statistics

- Consider i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$ with continuous probability density f.
- Let $Y_{1}<Y_{2}<Y_{3} \ldots<Y_{n}$ be list obtained by sorting the X_{j}.
- In particular, $Y_{1}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ is the maximum.
- What is the joint probability density of the Y_{i} ?
- Answer: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=n!\prod_{i=1}^{n} f\left(x_{i}\right)$ if $x_{1}<x_{2} \ldots<x_{n}$, zero otherwise.
- Let $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ be the permutation such that $X_{j}=Y_{\sigma(j)}$
- Are σ and the vector $\left(Y_{1}, \ldots, Y_{n}\right)$ independent of each other?
- Yes.

Example

- Let X_{1}, \ldots, X_{n} be i.i.d. uniform random variables on $[0,1]$.

Example

- Let X_{1}, \ldots, X_{n} be i.i.d. uniform random variables on $[0,1]$.
- Example: say $n=10$ and condition on X_{1} being the third largest of the X_{j}.

Example

- Let X_{1}, \ldots, X_{n} be i.i.d. uniform random variables on $[0,1]$.
- Example: say $n=10$ and condition on X_{1} being the third largest of the X_{j}.
- Given this, what is the conditional probability density function for X_{1} ?

Example

- Let X_{1}, \ldots, X_{n} be i.i.d. uniform random variables on $[0,1]$.
- Example: say $n=10$ and condition on X_{1} being the third largest of the X_{j}.
- Given this, what is the conditional probability density function for X_{1} ?
- Write $p=X_{1}$. This kind of like choosing a random p and then conditioning on 7 heads and 2 tails.

Example

- Let X_{1}, \ldots, X_{n} be i.i.d. uniform random variables on $[0,1]$.
- Example: say $n=10$ and condition on X_{1} being the third largest of the X_{j}.
- Given this, what is the conditional probability density function for X_{1} ?
- Write $p=X_{1}$. This kind of like choosing a random p and then conditioning on 7 heads and 2 tails.
- Answer is beta distribution with parameters $(a, b)=(8,3)$.

Example

- Let X_{1}, \ldots, X_{n} be i.i.d. uniform random variables on $[0,1]$.
- Example: say $n=10$ and condition on X_{1} being the third largest of the X_{j}.
- Given this, what is the conditional probability density function for X_{1} ?
- Write $p=X_{1}$. This kind of like choosing a random p and then conditioning on 7 heads and 2 tails.
- Answer is beta distribution with parameters $(a, b)=(8,3)$.
- Up to a constant, $f(x)=x^{7}(1-x)^{2}$.

Example

- Let X_{1}, \ldots, X_{n} be i.i.d. uniform random variables on $[0,1]$.
- Example: say $n=10$ and condition on X_{1} being the third largest of the X_{j}.
- Given this, what is the conditional probability density function for X_{1} ?
- Write $p=X_{1}$. This kind of like choosing a random p and then conditioning on 7 heads and 2 tails.
- Answer is beta distribution with parameters $(a, b)=(8,3)$.
- Up to a constant, $f(x)=x^{7}(1-x)^{2}$.
- General beta (a, b) expectation is $a /(a+b)=8 / 11$. Mode is $\frac{(a-1)}{(a-1)+(b-1)}=2 / 9$.

Outline

Conditional probability densities

Order statistics

Expectations of sums

Outline

Conditional probability densities

Order statistics

Expectations of sums

Properties of expectation

- Several properties we derived for discrete expectations continue to hold in the continuum.

Properties of expectation

- Several properties we derived for discrete expectations continue to hold in the continuum.
- If X is discrete with mass function $p(x)$ then $E[X]=\sum_{x} p(x) x$.

Properties of expectation

- Several properties we derived for discrete expectations continue to hold in the continuum.
- If X is discrete with mass function $p(x)$ then $E[X]=\sum_{x} p(x) x$.
- Similarly, if X is continuous with density function $f(x)$ then $E[X]=\int f(x) x d x$.

Properties of expectation

- Several properties we derived for discrete expectations continue to hold in the continuum.
- If X is discrete with mass function $p(x)$ then $E[X]=\sum_{x} p(x) x$.
- Similarly, if X is continuous with density function $f(x)$ then $E[X]=\int f(x) x d x$.
- If X is discrete with mass function $p(x)$ then $E[g(x)]=\sum_{x} p(x) g(x)$.

Properties of expectation

- Several properties we derived for discrete expectations continue to hold in the continuum.
- If X is discrete with mass function $p(x)$ then $E[X]=\sum_{x} p(x) x$.
- Similarly, if X is continuous with density function $f(x)$ then $E[X]=\int f(x) x d x$.
- If X is discrete with mass function $p(x)$ then $E[g(x)]=\sum_{x} p(x) g(x)$.
- Similarly, X if is continuous with density function $f(x)$ then $E[g(X)]=\int f(x) g(x) d x$.

Properties of expectation

- Several properties we derived for discrete expectations continue to hold in the continuum.
- If X is discrete with mass function $p(x)$ then $E[X]=\sum_{x} p(x) x$.
- Similarly, if X is continuous with density function $f(x)$ then $E[X]=\int f(x) x d x$.
- If X is discrete with mass function $p(x)$ then $E[g(x)]=\sum_{x} p(x) g(x)$.
- Similarly, X if is continuous with density function $f(x)$ then $E[g(X)]=\int f(x) g(x) d x$.
- If X and Y have joint mass function $p(x, y)$ then $E[g(X, Y)]=\sum_{y} \sum_{x} g(x, y) p(x, y)$.

Properties of expectation

- Several properties we derived for discrete expectations continue to hold in the continuum.
- If X is discrete with mass function $p(x)$ then $E[X]=\sum_{x} p(x) x$.
- Similarly, if X is continuous with density function $f(x)$ then $E[X]=\int f(x) x d x$.
- If X is discrete with mass function $p(x)$ then $E[g(x)]=\sum_{x} p(x) g(x)$.
- Similarly, X if is continuous with density function $f(x)$ then $E[g(X)]=\int f(x) g(x) d x$.
- If X and Y have joint mass function $p(x, y)$ then $E[g(X, Y)]=\sum_{y} \sum_{x} g(x, y) p(x, y)$.
- If X and Y have joint probability density function $f(x, y)$ then $E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) d x d y$.

Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X+Y]=E[X]+E[Y]$.

Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X+Y]=E[X]+E[Y]$.
- In both discrete and continuous settings, $E[a X]=a E[X]$ when a is a constant. And $E\left[\sum a_{i} X_{i}\right]=\sum a_{i} E\left[X_{i}\right]$.

Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X+Y]=E[X]+E[Y]$.
- In both discrete and continuous settings, $E[a X]=a E[X]$ when a is a constant. And $E\left[\sum a_{i} X_{i}\right]=\sum a_{i} E\left[X_{i}\right]$.
- But what about that delightful "area under $1-F_{X}$ " formula for the expectation?

Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X+Y]=E[X]+E[Y]$.
- In both discrete and continuous settings, $E[a X]=a E[X]$ when a is a constant. And $E\left[\sum a_{i} X_{i}\right]=\sum a_{i} E\left[X_{i}\right]$.
- But what about that delightful "area under $1-F_{X}$ " formula for the expectation?
- When X is non-negative with probability one, do we always have $E[X]=\int_{0}^{\infty} P\{X>x\}$, in both discrete and continuous settings?

Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X+Y]=E[X]+E[Y]$.
- In both discrete and continuous settings, $E[a X]=a E[X]$ when a is a constant. And $E\left[\sum a_{i} X_{i}\right]=\sum a_{i} E\left[X_{i}\right]$.
- But what about that delightful "area under $1-F_{X}$ " formula for the expectation?
- When X is non-negative with probability one, do we always have $E[X]=\int_{0}^{\infty} P\{X>x\}$, in both discrete and continuous settings?
- Define $g(y)$ so that $1-F_{X}(g(y))=y$. (Draw horizontal line at height y and look where it hits graph of $1-F_{X}$.)

Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X+Y]=E[X]+E[Y]$.
- In both discrete and continuous settings, $E[a X]=a E[X]$ when a is a constant. And $E\left[\sum a_{i} X_{i}\right]=\sum a_{i} E\left[X_{i}\right]$.
- But what about that delightful "area under $1-F_{X}$ " formula for the expectation?
- When X is non-negative with probability one, do we always have $E[X]=\int_{0}^{\infty} P\{X>x\}$, in both discrete and continuous settings?
- Define $g(y)$ so that $1-F_{X}(g(y))=y$. (Draw horizontal line at height y and look where it hits graph of $1-F_{X}$.)
- Choose Y uniformly on $[0,1]$ and note that $g(Y)$ has the same probability distribution as X.

Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X+Y]=E[X]+E[Y]$.
- In both discrete and continuous settings, $E[a X]=a E[X]$ when a is a constant. And $E\left[\sum a_{i} X_{i}\right]=\sum a_{i} E\left[X_{i}\right]$.
- But what about that delightful "area under $1-F_{X}$ " formula for the expectation?
- When X is non-negative with probability one, do we always have $E[X]=\int_{0}^{\infty} P\{X>x\}$, in both discrete and continuous settings?
- Define $g(y)$ so that $1-F_{X}(g(y))=y$. (Draw horizontal line at height y and look where it hits graph of $1-F_{X}$.)
- Choose Y uniformly on $[0,1]$ and note that $g(Y)$ has the same probability distribution as X.
- So $E[X]=E[g(Y)]=\int_{0}^{1} g(y) d y$, which is indeed the area under the graph of $1-F_{X}$.

