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Summing two random variables

I Say we have independent random variables X and Y and we
know their density functions fX and fY .

I Now let’s try to find FX+Y (a) = P{X + Y ≤ a}.
I This is the integral over {(x , y) : x + y ≤ a} of

f (x , y) = fX (x)fY (y). Thus,

I

P{X + Y ≤ a} =

∫ ∞
−∞

∫ a−y

−∞
fX (x)fY (y)dxdy

=

∫ ∞
−∞

FX (a− y)fY (y)dy .

I Differentiating both sides gives
fX+Y (a) = d

da

∫∞
−∞ FX (a−y)fY (y)dy =

∫∞
−∞ fX (a−y)fY (y)dy .

I Latter formula makes some intuitive sense. We’re integrating
over the set of x , y pairs that add up to a.
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Independent identically distributed (i.i.d.)

I The abbreviation i.i.d. means independent identically
distributed.

I It is actually one of the most important abbreviations in
probability theory.

I Worth memorizing.
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Summing i.i.d. uniform random variables

I Suppose that X and Y are i.i.d. and uniform on [0, 1]. So
fX = fY = 1 on [0, 1].

I What is the probability density function of X + Y ?

I fX+Y (a) =
∫∞
−∞ fX (a− y)fY (y)dy =

∫ 1
0 fX (a− y) which is

the length of [0, 1] ∩ [a− 1, a].

I That’s a when a ∈ [0, 1] and 2− a when a ∈ [1, 2] and 0
otherwise.
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Review: summing i.i.d. geometric random variables

I A geometric random variable X with parameter p has
P{X = k} = (1− p)k−1p for k ≥ 1.

I Sum Z of n independent copies of X?

I We can interpret Z as time slot where nth head occurs in
i.i.d. sequence of p-coin tosses.

I So Z is negative binomial (n, p). So
P{Z = k} =

(k−1
n−1

)
pn−1(1− p)k−np.
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Summing i.i.d. exponential random variables

I Suppose X1, . . .Xn are i.i.d. exponential random variables with
parameter λ. So fXi

(x) = λe−λx on [0,∞) for all 1 ≤ i ≤ n.

I What is the law of Z =
∑n

i=1 Xi?

I We claimed in an earlier lecture that this was a gamma
distribution with parameters (λ, n).

I So fZ (y) = λe−λy (λy)n−1

Γ(n) .

I We argued this point by taking limits of negative binomial
distributions. Can we check it directly?

I By induction, would suffice to show that a gamma (λ, 1) plus
an independent gamma (λ, n) is a gamma (λ, n + 1).
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Summing independent gamma random variables

I Say X is gamma (λ, s), Y is gamma (λ, t), and X and Y are
independent.

I Intuitively, X is amount of time till we see s events, and Y is
amount of subsequent time till we see t more events.

I So fX (x) = λe−λx (λx)s−1

Γ(s) and fY (y) = λe−λy (λy)t−1

Γ(t) .

I Now fX+Y (a) =
∫∞
−∞ fX (a− y)fY (y)dy .

I Up to an a-independent multiplicative constant, this is∫ a

0
e−λ(a−y)(a−y)s−1e−λyy t−1dy = e−λa

∫ a

0
(a−y)s−1y t−1dy .

I Letting x = y/a, this becomes

e−λaas+t−1
∫ 1

0 (1− x)s−1x t−1dx .

I This is (up to multiplicative constant) e−λaas+t−1. Constant
must be such that integral from −∞ to ∞ is 1. Conclude
that X + Y is gamma (λ, s + t).
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Summing two normal variables

I X is normal with mean zero, variance σ2
1, Y is normal with

mean zero, variance σ2
2.

I fX (x) = 1√
2πσ1

e
−x2

2σ2
1 and fY (y) = 1√

2πσ2
e

−y2

2σ2
2 .

I We just need to compute fX+Y (a) =
∫∞
−∞ fX (a− y)fY (y)dy .

I We could compute this directly.

I Or we could argue with a multi-dimensional bell curve picture
that if X and Y have variance 1 then fσ1X+σ2Y is the density
of a normal random variable (and note that variances and
expectations are additive).

I Or use fact that if Ai ∈ {−1, 1} are i.i.d. coin tosses then
1√
N

∑σ2N
i=1 Ai is approximately normal with variance σ2 when

N is large.

I Generally: if independent random variables Xj are normal
(µj , σ

2
j ) then

∑n
j=1 Xj is normal (

∑n
j=1 µj ,

∑n
j=1 σ

2
j ).
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of a normal random variable (and note that variances and
expectations are additive).

I Or use fact that if Ai ∈ {−1, 1} are i.i.d. coin tosses then
1√
N

∑σ2N
i=1 Ai is approximately normal with variance σ2 when

N is large.

I Generally: if independent random variables Xj are normal
(µj , σ

2
j ) then

∑n
j=1 Xj is normal (

∑n
j=1 µj ,

∑n
j=1 σ

2
j ).
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Other sums

I Sum of an independent binomial (m, p) and binomial (n, p)?

I Yes, binomial (m + n, p). Can be seen from coin toss
interpretation.

I Sum of independent Poisson λ1 and Poisson λ2?

I Yes, Poisson λ1 + λ2. Can be seen from Poisson point process
interpretation.



Other sums

I Sum of an independent binomial (m, p) and binomial (n, p)?

I Yes, binomial (m + n, p). Can be seen from coin toss
interpretation.

I Sum of independent Poisson λ1 and Poisson λ2?

I Yes, Poisson λ1 + λ2. Can be seen from Poisson point process
interpretation.



Other sums

I Sum of an independent binomial (m, p) and binomial (n, p)?

I Yes, binomial (m + n, p). Can be seen from coin toss
interpretation.

I Sum of independent Poisson λ1 and Poisson λ2?

I Yes, Poisson λ1 + λ2. Can be seen from Poisson point process
interpretation.



Other sums

I Sum of an independent binomial (m, p) and binomial (n, p)?

I Yes, binomial (m + n, p). Can be seen from coin toss
interpretation.

I Sum of independent Poisson λ1 and Poisson λ2?

I Yes, Poisson λ1 + λ2. Can be seen from Poisson point process
interpretation.


