18.600: Lecture 22

Sums of independent random variables

Scott Sheffield

MIT

Summing two random variables

- Say we have independent random variables X and Y and we know their density functions f_{X} and f_{Y}.

Summing two random variables

- Say we have independent random variables X and Y and we know their density functions f_{X} and f_{Y}.
- Now let's try to find $F_{X+Y}(a)=P\{X+Y \leq a\}$.

Summing two random variables

- Say we have independent random variables X and Y and we know their density functions f_{X} and f_{Y}.
- Now let's try to find $F_{X+Y}(a)=P\{X+Y \leq a\}$.
- This is the integral over $\{(x, y): x+y \leq a\}$ of $f(x, y)=f_{X}(x) f_{Y}(y)$. Thus,

Summing two random variables

- Say we have independent random variables X and Y and we know their density functions f_{X} and f_{Y}.
- Now let's try to find $F_{X+Y}(a)=P\{X+Y \leq a\}$.
- This is the integral over $\{(x, y): x+y \leq a\}$ of $f(x, y)=f_{X}(x) f_{Y}(y)$. Thus,

$$
\begin{aligned}
P\{X+Y & \leq a\}=\int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y
\end{aligned}
$$

Summing two random variables

- Say we have independent random variables X and Y and we know their density functions f_{X} and f_{Y}.
- Now let's try to find $F_{X+Y}(a)=P\{X+Y \leq a\}$.
- This is the integral over $\{(x, y): x+y \leq a\}$ of $f(x, y)=f_{X}(x) f_{Y}(y)$. Thus,

$$
\begin{aligned}
P\{X+Y & \leq a\}=\int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y
\end{aligned}
$$

- Differentiating both sides gives

$$
f_{X+Y}(a)=\frac{d}{d a} \int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y
$$

Summing two random variables

- Say we have independent random variables X and Y and we know their density functions f_{X} and f_{Y}.
- Now let's try to find $F_{X+Y}(a)=P\{X+Y \leq a\}$.
- This is the integral over $\{(x, y): x+y \leq a\}$ of $f(x, y)=f_{X}(x) f_{Y}(y)$. Thus,

$$
\begin{aligned}
P\{X+Y & \leq a\}=\int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y
\end{aligned}
$$

- Differentiating both sides gives $f_{X+Y}(a)=\frac{d}{d a} \int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y$.
- Latter formula makes some intuitive sense. We're integrating over the set of x, y pairs that add up to a.

Independent identically distributed (i.i.d.)

- The abbreviation i.i.d. means independent identically distributed.

Independent identically distributed (i.i.d.)

- The abbreviation i.i.d. means independent identically distributed.
- It is actually one of the most important abbreviations in probability theory.

Independent identically distributed (i.i.d.)

- The abbreviation i.i.d. means independent identically distributed.
- It is actually one of the most important abbreviations in probability theory.
- Worth memorizing.

Summing i.i.d. uniform random variables

- Suppose that X and Y are i.i.d. and uniform on $[0,1]$. So $f_{X}=f_{Y}=1$ on $[0,1]$.

Summing i.i.d. uniform random variables

- Suppose that X and Y are i.i.d. and uniform on $[0,1]$. So $f_{X}=f_{Y}=1$ on $[0,1]$.
- What is the probability density function of $X+Y$?

Summing i.i.d. uniform random variables

- Suppose that X and Y are i.i.d. and uniform on $[0,1]$. So $f_{X}=f_{Y}=1$ on $[0,1]$.
- What is the probability density function of $X+Y$?
- $f_{X+Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y=\int_{0}^{1} f_{X}(a-y)$ which is the length of $[0,1] \cap[a-1, a]$.

Summing i.i.d. uniform random variables

- Suppose that X and Y are i.i.d. and uniform on $[0,1]$. So $f_{X}=f_{Y}=1$ on $[0,1]$.
- What is the probability density function of $X+Y$?
- $f_{X+Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y=\int_{0}^{1} f_{X}(a-y)$ which is the length of $[0,1] \cap[a-1, a]$.
- That's a when $a \in[0,1]$ and $2-a$ when $a \in[1,2]$ and 0 otherwise.

Review: summing i.i.d. geometric random variables

- A geometric random variable X with parameter p has $P\{X=k\}=(1-p)^{k-1} p$ for $k \geq 1$.

Review: summing i.i.d. geometric random variables

- A geometric random variable X with parameter p has $P\{X=k\}=(1-p)^{k-1} p$ for $k \geq 1$.
- Sum Z of n independent copies of X ?

Review: summing i.i.d. geometric random variables

- A geometric random variable X with parameter p has $P\{X=k\}=(1-p)^{k-1} p$ for $k \geq 1$.
- Sum Z of n independent copies of X ?
- We can interpret Z as time slot where nth head occurs in i.i.d. sequence of p-coin tosses.

Review: summing i.i.d. geometric random variables

- A geometric random variable X with parameter p has $P\{X=k\}=(1-p)^{k-1} p$ for $k \geq 1$.
- Sum Z of n independent copies of X ?
- We can interpret Z as time slot where nth head occurs in i.i.d. sequence of p-coin tosses.
- So Z is negative binomial (n, p). So

$$
P\{Z=k\}=\binom{k-1}{n-1} p^{n-1}(1-p)^{k-n} p .
$$

Summing i.i.d. exponential random variables

- Suppose $X_{1}, \ldots X_{n}$ are i.i.d. exponential random variables with parameter λ. So $f_{X_{i}}(x)=\lambda e^{-\lambda x}$ on $[0, \infty)$ for all $1 \leq i \leq n$.

Summing i.i.d. exponential random variables

- Suppose $X_{1}, \ldots X_{n}$ are i.i.d. exponential random variables with parameter λ. So $f_{X_{i}}(x)=\lambda e^{-\lambda x}$ on $[0, \infty)$ for all $1 \leq i \leq n$.
- What is the law of $Z=\sum_{i=1}^{n} X_{i}$?

Summing i.i.d. exponential random variables

- Suppose $X_{1}, \ldots X_{n}$ are i.i.d. exponential random variables with parameter λ. So $f_{X_{i}}(x)=\lambda e^{-\lambda x}$ on $[0, \infty)$ for all $1 \leq i \leq n$.
- What is the law of $Z=\sum_{i=1}^{n} X_{i}$?
- We claimed in an earlier lecture that this was a gamma distribution with parameters (λ, n).

Summing i.i.d. exponential random variables

- Suppose $X_{1}, \ldots X_{n}$ are i.i.d. exponential random variables with parameter λ. So $f_{X_{i}}(x)=\lambda e^{-\lambda x}$ on $[0, \infty)$ for all $1 \leq i \leq n$.
- What is the law of $Z=\sum_{i=1}^{n} X_{i}$?
- We claimed in an earlier lecture that this was a gamma distribution with parameters (λ, n).
- So $f_{Z}(y)=\frac{\lambda e^{-\lambda y}(\lambda y)^{n-1}}{\Gamma(n)}$.

Summing i.i.d. exponential random variables

- Suppose $X_{1}, \ldots X_{n}$ are i.i.d. exponential random variables with parameter λ. So $f_{X_{i}}(x)=\lambda e^{-\lambda x}$ on $[0, \infty)$ for all $1 \leq i \leq n$.
- What is the law of $Z=\sum_{i=1}^{n} X_{i}$?
- We claimed in an earlier lecture that this was a gamma distribution with parameters (λ, n).
- So $f_{Z}(y)=\frac{\lambda e^{-\lambda y}(\lambda y)^{n-1}}{\Gamma(n)}$.
- We argued this point by taking limits of negative binomial distributions. Can we check it directly?

Summing i.i.d. exponential random variables

- Suppose $X_{1}, \ldots X_{n}$ are i.i.d. exponential random variables with parameter λ. So $f_{X_{i}}(x)=\lambda e^{-\lambda x}$ on $[0, \infty)$ for all $1 \leq i \leq n$.
- What is the law of $Z=\sum_{i=1}^{n} X_{i}$?
- We claimed in an earlier lecture that this was a gamma distribution with parameters (λ, n).
- So $f_{Z}(y)=\frac{\lambda e^{-\lambda y}(\lambda y)^{n-1}}{\Gamma(n)}$.
- We argued this point by taking limits of negative binomial distributions. Can we check it directly?
- By induction, would suffice to show that a gamma $(\lambda, 1)$ plus an independent gamma (λ, n) is a gamma $(\lambda, n+1)$.

Summing independent gamma random variables

- Say X is gamma $(\lambda, s), Y$ is gamma (λ, t), and X and Y are independent.

Summing independent gamma random variables

- Say X is gamma $(\lambda, s), Y$ is gamma (λ, t), and X and Y are independent.
- Intuitively, X is amount of time till we see s events, and Y is amount of subsequent time till we see t more events.

Summing independent gamma random variables

- Say X is gamma $(\lambda, s), Y$ is gamma (λ, t), and X and Y are independent.
- Intuitively, X is amount of time till we see s events, and Y is amount of subsequent time till we see t more events.
- So $f_{X}(x)=\frac{\lambda e^{-\lambda x}(\lambda x)^{s-1}}{\Gamma(s)}$ and $f_{Y}(y)=\frac{\lambda e^{-\lambda y}(\lambda y)^{t-1}}{\Gamma(t)}$.

Summing independent gamma random variables

- Say X is gamma $(\lambda, s), Y$ is gamma (λ, t), and X and Y are independent.
- Intuitively, X is amount of time till we see s events, and Y is amount of subsequent time till we see t more events.
- So $f_{X}(x)=\frac{\lambda e^{-\lambda x}(\lambda x)^{s-1}}{\Gamma(s)}$ and $f_{Y}(y)=\frac{\lambda e^{-\lambda y}(\lambda y)^{t-1}}{\Gamma(t)}$.
- Now $f_{X+Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y$.

Summing independent gamma random variables

- Say X is gamma $(\lambda, s), Y$ is gamma (λ, t), and X and Y are independent.
- Intuitively, X is amount of time till we see s events, and Y is amount of subsequent time till we see t more events.
- So $f_{X}(x)=\frac{\lambda e^{-\lambda x}(\lambda x)^{s-1}}{\Gamma(s)}$ and $f_{Y}(y)=\frac{\lambda e^{-\lambda y}(\lambda y)^{t-1}}{\Gamma(t)}$.
- Now $f_{X+Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y$.
- Up to an a-independent multiplicative constant, this is

$$
\int_{0}^{a} e^{-\lambda(a-y)}(a-y)^{s-1} e^{-\lambda y} y^{t-1} d y=e^{-\lambda a} \int_{0}^{a}(a-y)^{s-1} y^{t-1} d y
$$

Summing independent gamma random variables

- Say X is gamma $(\lambda, s), Y$ is gamma (λ, t), and X and Y are independent.
- Intuitively, X is amount of time till we see s events, and Y is amount of subsequent time till we see t more events.
- So $f_{X}(x)=\frac{\lambda e^{-\lambda x}(\lambda x)^{s-1}}{\Gamma(s)}$ and $f_{Y}(y)=\frac{\lambda e^{-\lambda y}(\lambda y)^{t-1}}{\Gamma(t)}$.
- Now $f_{X+Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y$.
- Up to an a-independent multiplicative constant, this is

$$
\int_{0}^{a} e^{-\lambda(a-y)}(a-y)^{s-1} e^{-\lambda y} y^{t-1} d y=e^{-\lambda a} \int_{0}^{a}(a-y)^{s-1} y^{t-1} d y
$$

- Letting $x=y / a$, this becomes

$$
e^{-\lambda a} a^{s+t-1} \int_{0}^{1}(1-x)^{s-1} x^{t-1} d x
$$

Summing independent gamma random variables

- Say X is gamma $(\lambda, s), Y$ is gamma (λ, t), and X and Y are independent.
- Intuitively, X is amount of time till we see s events, and Y is amount of subsequent time till we see t more events.
- So $f_{X}(x)=\frac{\lambda e^{-\lambda x}(\lambda x)^{s-1}}{\Gamma(s)}$ and $f_{Y}(y)=\frac{\lambda e^{-\lambda y}(\lambda y)^{t-1}}{\Gamma(t)}$.
- Now $f_{X+Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y$.
- Up to an a-independent multiplicative constant, this is

$$
\int_{0}^{a} e^{-\lambda(a-y)}(a-y)^{s-1} e^{-\lambda y} y^{t-1} d y=e^{-\lambda a} \int_{0}^{a}(a-y)^{s-1} y^{t-1} d y
$$

- Letting $x=y / a$, this becomes
$e^{-\lambda a} a^{s+t-1} \int_{0}^{1}(1-x)^{s-1} x^{t-1} d x$.
- This is (up to multiplicative constant) $e^{-\lambda a} a^{s+t-1}$. Constant must be such that integral from $-\infty$ to ∞ is 1 . Conclude that $X+Y$ is gamma $(\lambda, s+t)$.

Summing two normal variables

- X is normal with mean zero, variance σ_{1}^{2}, Y is normal with mean zero, variance σ_{2}^{2}.

Summing two normal variables

- X is normal with mean zero, variance σ_{1}^{2}, Y is normal with mean zero, variance σ_{2}^{2}.
- $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{\frac{-x^{2}}{2 \sigma_{1}^{2}}}$ and $f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{\frac{-y^{2}}{2 \sigma_{2}^{2}}}$.

Summing two normal variables

- X is normal with mean zero, variance σ_{1}^{2}, Y is normal with mean zero, variance σ_{2}^{2}.
- $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{\frac{-x^{2}}{2 \sigma_{1}^{2}}}$ and $f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{\frac{-y^{2}}{2 \sigma_{2}^{2}}}$.
- We just need to compute $f_{X+Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y$.

Summing two normal variables

- X is normal with mean zero, variance σ_{1}^{2}, Y is normal with mean zero, variance σ_{2}^{2}.
- $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{\frac{-x^{2}}{2 \sigma_{1}^{2}}}$ and $f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{\frac{-y^{2}}{2 \sigma_{2}^{2}}}$.
- We just need to compute $f_{X+Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y$.
- We could compute this directly.

Summing two normal variables

- X is normal with mean zero, variance σ_{1}^{2}, Y is normal with mean zero, variance σ_{2}^{2}.
- $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{\frac{-x^{2}}{2 \sigma_{1}^{2}}}$ and $f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{\frac{-y^{2}}{2 \sigma_{2}^{2}}}$.
- We just need to compute $f_{X+Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y$.
- We could compute this directly.
- Or we could argue with a multi-dimensional bell curve picture that if X and Y have variance 1 then $f_{\sigma_{1} X+\sigma_{2} Y}$ is the density of a normal random variable (and note that variances and expectations are additive).

Summing two normal variables

- X is normal with mean zero, variance σ_{1}^{2}, Y is normal with mean zero, variance σ_{2}^{2}.
- $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{\frac{-x^{2}}{2 \sigma_{1}^{2}}}$ and $f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{\frac{-y^{2}}{2 \sigma_{2}^{2}}}$.
- We just need to compute $f_{X+Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y$.
- We could compute this directly.
- Or we could argue with a multi-dimensional bell curve picture that if X and Y have variance 1 then $f_{\sigma_{1} X+\sigma_{2} Y}$ is the density of a normal random variable (and note that variances and expectations are additive).
- Or use fact that if $A_{i} \in\{-1,1\}$ are i.i.d. coin tosses then $\frac{1}{\sqrt{N}} \sum_{i=1}^{\sigma^{2} N} A_{i}$ is approximately normal with variance σ^{2} when N is large.

Summing two normal variables

- X is normal with mean zero, variance σ_{1}^{2}, Y is normal with mean zero, variance σ_{2}^{2}.
- $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{\frac{-x^{2}}{2 \sigma_{1}^{2}}}$ and $f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{\frac{-y^{2}}{2 \sigma_{2}^{2}}}$.
- We just need to compute $f_{X+Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y$.
- We could compute this directly.
- Or we could argue with a multi-dimensional bell curve picture that if X and Y have variance 1 then $f_{\sigma_{1} X+\sigma_{2} Y}$ is the density of a normal random variable (and note that variances and expectations are additive).
- Or use fact that if $A_{i} \in\{-1,1\}$ are i.i.d. coin tosses then $\frac{1}{\sqrt{N}} \sum_{i=1}^{\sigma^{2} N} A_{i}$ is approximately normal with variance σ^{2} when N is large.
- Generally: if independent random variables X_{j} are normal $\left(\mu_{j}, \sigma_{j}^{2}\right)$ then $\sum_{j=1}^{n} X_{j}$ is normal $\left(\sum_{j=1}^{n} \mu_{j}, \sum_{j=1}^{n} \sigma_{j}^{2}\right)$.

Other sums

- Sum of an independent binomial (m, p) and binomial (n, p) ?

Other sums

- Sum of an independent binomial (m, p) and binomial (n, p) ?
- Yes, binomial $(m+n, p)$. Can be seen from coin toss interpretation.

Other sums

- Sum of an independent binomial (m, p) and binomial (n, p) ?
- Yes, binomial $(m+n, p)$. Can be seen from coin toss interpretation.
- Sum of independent Poisson λ_{1} and Poisson λ_{2} ?

Other sums

- Sum of an independent binomial (m, p) and binomial (n, p) ?
- Yes, binomial $(m+n, p)$. Can be seen from coin toss interpretation.
- Sum of independent Poisson λ_{1} and Poisson λ_{2} ?
- Yes, Poisson $\lambda_{1}+\lambda_{2}$. Can be seen from Poisson point process interpretation.

