18.600: Lecture 12
 Poisson random variables

Scott Sheffield

MIT

Outline

Poisson random variable definition

Poisson random variable properties

Poisson random variable problems

Outline

Poisson random variable definition

Poisson random variable properties

Poisson random variable problems

Poisson random variables: motivating questions

- How many raindrops hit a given square inch of sidewalk during a ten minute period?

Poisson random variables: motivating questions

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?

Poisson random variables: motivating questions

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?
- How many plane crashes in a given year?

Poisson random variables: motivating questions

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?
- How many plane crashes in a given year?
- How many radioactive particles emitted during a time period in which the expected number emitted is 5 ?

Poisson random variables: motivating questions

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?
- How many plane crashes in a given year?
- How many radioactive particles emitted during a time period in which the expected number emitted is 5 ?
- How many calls to call center during a given minute?

Poisson random variables: motivating questions

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?
- How many plane crashes in a given year?
- How many radioactive particles emitted during a time period in which the expected number emitted is 5 ?
- How many calls to call center during a given minute?
- How many goals scored during a 90 minute soccer game?

Poisson random variables: motivating questions

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?
- How many plane crashes in a given year?
- How many radioactive particles emitted during a time period in which the expected number emitted is 5 ?
- How many calls to call center during a given minute?
- How many goals scored during a 90 minute soccer game?
- How many notable gaffes during 90 minute debate?

Poisson random variables: motivating questions

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?
- How many plane crashes in a given year?
- How many radioactive particles emitted during a time period in which the expected number emitted is 5 ?
- How many calls to call center during a given minute?
- How many goals scored during a 90 minute soccer game?
- How many notable gaffes during 90 minute debate?
- Key idea for all these examples: Divide time into large number of small increments. Assume that during each increment, there is some small probability of thing happening (independently of other increments).

Remember what e is?

- The number e is defined by $e=\lim _{n \rightarrow \infty}(1+1 / n)^{n}$.

Remember what e is?

- The number e is defined by $e=\lim _{n \rightarrow \infty}(1+1 / n)^{n}$.
- It's the amount of money that one dollar grows to over a year when you have an interest rate of 100 percent, continuously compounded.

Remember what e is?

- The number e is defined by $e=\lim _{n \rightarrow \infty}(1+1 / n)^{n}$.
- It's the amount of money that one dollar grows to over a year when you have an interest rate of 100 percent, continuously compounded.
- Similarly, $e^{\lambda}=\lim _{n \rightarrow \infty}(1+\lambda / n)^{n}$.

Remember what e is?

- The number e is defined by $e=\lim _{n \rightarrow \infty}(1+1 / n)^{n}$.
- It's the amount of money that one dollar grows to over a year when you have an interest rate of 100 percent, continuously compounded.
- Similarly, $e^{\lambda}=\lim _{n \rightarrow \infty}(1+\lambda / n)^{n}$.
- It's the amount of money that one dollar grows to over a year when you have an interest rate of 100λ percent, continuously compounded.

Remember what e is?

- The number e is defined by $e=\lim _{n \rightarrow \infty}(1+1 / n)^{n}$.
- It's the amount of money that one dollar grows to over a year when you have an interest rate of 100 percent, continuously compounded.
- Similarly, $e^{\lambda}=\lim _{n \rightarrow \infty}(1+\lambda / n)^{n}$.
- It's the amount of money that one dollar grows to over a year when you have an interest rate of 100λ percent, continuously compounded.
- It's also the amount of money that one dollar grows to over λ years when you have an interest rate of 100 percent, continuously compounded.

Remember what e is?

- The number e is defined by $e=\lim _{n \rightarrow \infty}(1+1 / n)^{n}$.
- It's the amount of money that one dollar grows to over a year when you have an interest rate of 100 percent, continuously compounded.
- Similarly, $e^{\lambda}=\lim _{n \rightarrow \infty}(1+\lambda / n)^{n}$.
- It's the amount of money that one dollar grows to over a year when you have an interest rate of 100λ percent, continuously compounded.
- It's also the amount of money that one dollar grows to over λ years when you have an interest rate of 100 percent, continuously compounded.
- Can also change sign: $e^{-\lambda}=\lim _{n \rightarrow \infty}(1-\lambda / n)^{n}$.

Bernoulli random variable with n large and $n p=\lambda$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.

Bernoulli random variable with n large and $n p=\lambda$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes up heads with probability λ / n and I toss it n times.

Bernoulli random variable with n large and $n p=\lambda$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes up heads with probability λ / n and I toss it n times.
- How many heads do I expect to see?

Bernoulli random variable with n large and $n p=\lambda$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes up heads with probability λ / n and I toss it n times.
- How many heads do I expect to see?
- Answer: $n p=\lambda$.

Bernoulli random variable with n large and $n p=\lambda$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes up heads with probability λ / n and I toss it n times.
- How many heads do I expect to see?
- Answer: $n p=\lambda$.
- Let k be some moderate sized number (say $k=4$). What is the probability that I see exactly k heads?

Bernoulli random variable with n large and $n p=\lambda$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes up heads with probability λ / n and I toss it n times.
- How many heads do I expect to see?
- Answer: $n p=\lambda$.
- Let k be some moderate sized number (say $k=4$). What is the probability that I see exactly k heads?
- Binomial formula:

$$
\binom{n}{k} p^{k}(1-p)^{n-k}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k!} p^{k}(1-p)^{n-k} .
$$

Bernoulli random variable with n large and $n p=\lambda$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes up heads with probability λ / n and I toss it n times.
- How many heads do I expect to see?
- Answer: $n p=\lambda$.
- Let k be some moderate sized number (say $k=4$). What is the probability that I see exactly k heads?
- Binomial formula:

$$
\binom{n}{k} p^{k}(1-p)^{n-k}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k!} p^{k}(1-p)^{n-k} .
$$

- This is approximately $\frac{\lambda^{k}}{k!}(1-p)^{n-k} \approx \frac{\lambda^{k}}{k!} e^{-\lambda}$.

Bernoulli random variable with n large and $n p=\lambda$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes up heads with probability λ / n and I toss it n times.
- How many heads do I expect to see?
- Answer: $n p=\lambda$.
- Let k be some moderate sized number (say $k=4$). What is the probability that I see exactly k heads?
- Binomial formula:

$$
\binom{n}{k} p^{k}(1-p)^{n-k}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k!} p^{k}(1-p)^{n-k} .
$$

- This is approximately $\frac{\lambda^{k}}{k!}(1-p)^{n-k} \approx \frac{\lambda^{k}}{k!} e^{-\lambda}$.
- A Poisson random variable X with parameter λ satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.

Outline

Poisson random variable definition

Poisson random variable properties

Poisson random variable problems

Outline

Poisson random variable definition

Poisson random variable properties

Poisson random variable problems

Probabilities sum to one

- A Poisson random variable X with parameter λ satisfies $p(k)=P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.

Probabilities sum to one

- A Poisson random variable X with parameter λ satisfies $p(k)=P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- How can we show that $\sum_{k=0}^{\infty} p(k)=1$?

Probabilities sum to one

- A Poisson random variable X with parameter λ satisfies $p(k)=P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- How can we show that $\sum_{k=0}^{\infty} p(k)=1$?
- Use Taylor expansion $e^{\lambda}=\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}$.

Probabilities sum to one

- A Poisson random variable X with parameter λ satisfies $p(k)=P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- How can we show that $\sum_{k=0}^{\infty} p(k)=1$?
- Use Taylor expansion $e^{\lambda}=\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}$.
- Multiply both sides by 1 to get $1=\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^{k}}{k!}$.

Probabilities sum to one

- A Poisson random variable X with parameter λ satisfies $p(k)=P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- How can we show that $\sum_{k=0}^{\infty} p(k)=1$?
- Use Taylor expansion $e^{\lambda}=\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}$.
- Multiply both sides by 1 to get $1=\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^{k}}{k!}$.
- This is one way to remember the Poisson probability mass function. Just remember that it comes from Taylor expansion of e^{λ}.

Remembering/understanding the formula

- Is there a kind of more motivated term-by-term way to remember where $e^{-\lambda} \lambda^{k} / k$! comes from? Look at, say, $k=3$.

Remembering/understanding the formula

- Is there a kind of more motivated term-by-term way to remember where $e^{-\lambda} \lambda^{k} / k$! comes from? Look at, say, $k=3$.
- Say you toss $n=50$ coins, each heads with probability $\lambda / 50$.

Remembering/understanding the formula

- Is there a kind of more motivated term-by-term way to remember where $e^{-\lambda} \lambda^{k} / k$! comes from? Look at, say, $k=3$.
- Say you toss $n=50$ coins, each heads with probability $\lambda / 50$.
- How many "3-head sequences" like TTTTTTTTTTTTTTHT TTTTTTTTTTTTTHTTTTTTTTTTTTTTHTTTTTT?

Remembering/understanding the formula

- Is there a kind of more motivated term-by-term way to remember where $e^{-\lambda} \lambda^{k} / k$! comes from? Look at, say, $k=3$.
- Say you toss $n=50$ coins, each heads with probability $\lambda / 50$.
- How many "3-head sequences" like TTTTTTTTTTTTTTHT TTTTTTTTTTTTTHTTTTTTTTTTTTTTHTTTTTT?
- Number is about $n^{3} / 3$!. Because have about n^{3} ways to pick ordered triple ($5,35,24$), and nearly all such triples are distinct, and 3 ! such triples correspond to each sequence (since each sequence corresponds to an unordered triple).

Remembering/understanding the formula

- Is there a kind of more motivated term-by-term way to remember where $e^{-\lambda} \lambda^{k} / k$! comes from? Look at, say, $k=3$.
- Say you toss $n=50$ coins, each heads with probability $\lambda / 50$.
- How many "3-head sequences" like TTTTTTTTTTTTTTHT TTTTTTTTTTTTTHTTTTTTTTTTTTTTHTTTTTT?
- Number is about $n^{3} / 3$!. Because have about n^{3} ways to pick ordered triple $(5,35,24)$, and nearly all such triples are distinct, and 3 ! such triples correspond to each sequence (since each sequence corresponds to an unordered triple).
- Each sequence has probability about $(\lambda / n)^{3} e^{-\lambda}$. Multiplying number by probability gives about $e^{-\lambda} \lambda^{k} / k!$.

Remembering/understanding the formula

- Is there a kind of more motivated term-by-term way to remember where $e^{-\lambda} \lambda^{k} / k$! comes from? Look at, say, $k=3$.
- Say you toss $n=50$ coins, each heads with probability $\lambda / 50$.
- How many "3-head sequences" like TTTTTTTTTTTTTTHT TTTTTTTTTTTTTHTTTTTTTTTTTTTTHTTTTTT?
- Number is about $n^{3} / 3$!. Because have about n^{3} ways to pick ordered triple $(5,35,24)$, and nearly all such triples are distinct, and 3! such triples correspond to each sequence (since each sequence corresponds to an unordered triple).
- Each sequence has probability about $(\lambda / n)^{3} e^{-\lambda}$. Multiplying number by probability gives about $e^{-\lambda} \lambda^{k} / k!$.
- $e^{-\lambda}$ is approximate probability of all tails sequence.
- λ^{k} comes from fact that given sequence with k heads is $(\lambda / n)^{k}$ times more probable than given sequence with zero heads.
- k ! is "ordered vs. unordered overcount factor."

Expectation and variance

- Recall: Last lecture we showed that a binomial random variable with parameters (n, p) has expectation $n p$ and variance $n p q$ (where $q=1-p$).

Expectation and variance

- Recall: Last lecture we showed that a binomial random variable with parameters (n, p) has expectation $n p$ and variance $n p q$ (where $q=1-p$).
- Recall: We had two proof approaches: easier one using additivity of expectation and trickier one using the identify $i\binom{n}{i}=n\binom{n-1}{i-1}$.

Expectation and variance

- Recall: Last lecture we showed that a binomial random variable with parameters (n, p) has expectation $n p$ and variance $n p q$ (where $q=1-p$).
- Recall: We had two proof approaches: easier one using additivity of expectation and trickier one using the identify $i\binom{n}{i}=n\binom{n-1}{i-1}$.
- Now consider Poisson random variable X with parameter λ, which satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.

Expectation and variance

- Recall: Last lecture we showed that a binomial random variable with parameters (n, p) has expectation $n p$ and variance $n p q$ (where $q=1-p$).
- Recall: We had two proof approaches: easier one using additivity of expectation and trickier one using the identify $i\binom{n}{i}=n\binom{n-1}{i-1}$.
- Now consider Poisson random variable X with parameter λ, which satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- What are the expectation and variance of X ?

Expectation and variance

- Recall: Last lecture we showed that a binomial random variable with parameters (n, p) has expectation $n p$ and variance $n p q$ (where $q=1-p$).
- Recall: We had two proof approaches: easier one using additivity of expectation and trickier one using the identify $i\binom{n}{i}=n\binom{n-1}{i-1}$.
- Now consider Poisson random variable X with parameter λ, which satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- What are the expectation and variance of X ?
- Before seeking easiest way to rigorously derive what is easiest way to guess (and subsquently remember)?

Expectation and variance

- Recall: Last lecture we showed that a binomial random variable with parameters (n, p) has expectation $n p$ and variance $n p q$ (where $q=1-p$).
- Recall: We had two proof approaches: easier one using additivity of expectation and trickier one using the identify $i\binom{n}{i}=n\binom{n-1}{i-1}$.
- Now consider Poisson random variable X with parameter λ, which satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- What are the expectation and variance of X ?
- Before seeking easiest way to rigorously derive what is easiest way to guess (and subsquently remember)?
- Guess: $E[X]=\operatorname{Var}[X]=\lambda$. Reason: If Y is binomial with parameter (n, p), where $n p=\lambda$ with n very large so that $p \approx 0$ and $q \approx 1$, then $E[Y]=\lambda$ and $\operatorname{Var}[Y]=n p q \approx \lambda$.

Expectation and variance

- Recall: Last lecture we showed that a binomial random variable with parameters (n, p) has expectation $n p$ and variance $n p q$ (where $q=1-p$).
- Recall: We had two proof approaches: easier one using additivity of expectation and trickier one using the identify $i\binom{n}{i}=n\binom{n-1}{i-1}$.
- Now consider Poisson random variable X with parameter λ, which satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- What are the expectation and variance of X ?
- Before seeking easiest way to rigorously derive what is easiest way to guess (and subsquently remember)?
- Guess: $E[X]=\operatorname{Var}[X]=\lambda$. Reason: If Y is binomial with parameter (n, p), where $n p=\lambda$ with n very large so that $p \approx 0$ and $q \approx 1$, then $E[Y]=\lambda$ and $\operatorname{Var}[Y]=n p q \approx \lambda$.
- Mnemonic: binomial has variance npq, and Poisson is obtained by fixing $\lambda=n p$ and taking $q \rightarrow 1$, so Poisson has variance $\lambda=n p$. It's like $n p q$ without the q.

Expectation: formal derivation

- Let us formally derive the expectation of a Poisson random variable X with parameter λ, which satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.

Expectation: formal derivation

- Let us formally derive the expectation of a Poisson random variable X with parameter λ, which satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- We use a variant of the "trickier" derivation of binomial expectation. It's not too complicated.

Expectation: formal derivation

- Let us formally derive the expectation of a Poisson random variable X with parameter λ, which satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- We use a variant of the "trickier" derivation of binomial expectation. It's not too complicated.
- By definition of expectation

$$
E[X]=\sum_{k=0}^{\infty} P\{X=k\} k=\sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda}=\sum_{k=1}^{\infty} \frac{\lambda^{k}}{(k-1)!} e^{-\lambda} .
$$

Expectation: formal derivation

- Let us formally derive the expectation of a Poisson random variable X with parameter λ, which satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- We use a variant of the "trickier" derivation of binomial expectation. It's not too complicated.
- By definition of expectation

$$
E[X]=\sum_{k=0}^{\infty} P\{X=k\} k=\sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda}=\sum_{k=1}^{\infty} \frac{\lambda^{k}}{(k-1)!} e^{-\lambda} .
$$

- Setting $j=k-1$, this is $\lambda \sum_{j=0}^{\infty} \frac{\lambda_{j}^{j}}{j!} e^{-\lambda}=\lambda$.

Variance: formal derivation

- Given $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$, what is $\operatorname{Var}[X]$?

Variance: formal derivation

- Given $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$, what is $\operatorname{Var}[X]$?
- Use a variant of the "trickier" derivation of binomial variance.

Variance: formal derivation

- Given $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$, what is $\operatorname{Var}[X]$?
- Use a variant of the "trickier" derivation of binomial variance.
- Compute

$$
E\left[X^{2}\right]=\sum_{k=0}^{\infty} P\{X=k\} k^{2}=\sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda}=\lambda \sum_{k=1}^{\infty} k \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} .
$$

Variance: formal derivation

- Given $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$, what is $\operatorname{Var}[X]$?
- Use a variant of the "trickier" derivation of binomial variance.
- Compute

$$
E\left[X^{2}\right]=\sum_{k=0}^{\infty} P\{X=k\} k^{2}=\sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda}=\lambda \sum_{k=1}^{\infty} k \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} .
$$

- Setting $j=k-1$, this is

$$
\lambda\left(\sum_{j=0}^{\infty}(j+1) \frac{\lambda^{j}}{j!} e^{-\lambda}\right)=\lambda E[X+1]=\lambda(\lambda+1)
$$

Variance: formal derivation

- Given $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$, what is $\operatorname{Var}[X]$?
- Use a variant of the "trickier" derivation of binomial variance.
- Compute

$$
E\left[X^{2}\right]=\sum_{k=0}^{\infty} P\{X=k\} k^{2}=\sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda}=\lambda \sum_{k=1}^{\infty} k \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} .
$$

- Setting $j=k-1$, this is

$$
\lambda\left(\sum_{j=0}^{\infty}(j+1) \frac{\lambda^{j}}{j!} e^{-\lambda}\right)=\lambda E[X+1]=\lambda(\lambda+1)
$$

- Then $\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}=\lambda(\lambda+1)-\lambda^{2}=\lambda$.

Outline

Poisson random variable definition

Poisson random variable properties

Poisson random variable problems

Outline

Poisson random variable definition

Poisson random variable properties

Poisson random variable problems

Poisson random variable problems

- A country has an average of 2 plane crashes per year.

Poisson random variable problems

- A country has an average of 2 plane crashes per year.
- How reasonable is it to assume the number of crashes is Poisson with parameter 2?

Poisson random variable problems

- A country has an average of 2 plane crashes per year.
- How reasonable is it to assume the number of crashes is Poisson with parameter 2?
- Assuming this, what is the probability of exactly 2 crashes? Of zero crashes? Of four crashes?

Poisson random variable problems

- A country has an average of 2 plane crashes per year.
- How reasonable is it to assume the number of crashes is Poisson with parameter 2?
- Assuming this, what is the probability of exactly 2 crashes? Of zero crashes? Of four crashes?
- $e^{-\lambda} \lambda^{k} / k!$ with $\lambda=2$ and k set to 2 or 0 or 4

Poisson random variable problems

- A country has an average of 2 plane crashes per year.
- How reasonable is it to assume the number of crashes is Poisson with parameter 2?
- Assuming this, what is the probability of exactly 2 crashes? Of zero crashes? Of four crashes?
- $e^{-\lambda} \lambda^{k} / k!$ with $\lambda=2$ and k set to 2 or 0 or 4
- A city has an average of five major earthquakes a century. What is the probability that there is at least one major earthquake in a given decade (assuming the number of earthquakes per decade is Poisson)?

Poisson random variable problems

- A country has an average of 2 plane crashes per year.
- How reasonable is it to assume the number of crashes is Poisson with parameter 2?
- Assuming this, what is the probability of exactly 2 crashes? Of zero crashes? Of four crashes?
- $e^{-\lambda} \lambda^{k} / k$! with $\lambda=2$ and k set to 2 or 0 or 4
- A city has an average of five major earthquakes a century. What is the probability that there is at least one major earthquake in a given decade (assuming the number of earthquakes per decade is Poisson)?
- $1-e^{-\lambda} \lambda^{k} / k$! with $\lambda=.5$ and $k=0$

Poisson random variable problems

- A country has an average of 2 plane crashes per year.
- How reasonable is it to assume the number of crashes is Poisson with parameter 2?
- Assuming this, what is the probability of exactly 2 crashes? Of zero crashes? Of four crashes?
- $e^{-\lambda} \lambda^{k} / k$! with $\lambda=2$ and k set to 2 or 0 or 4
- A city has an average of five major earthquakes a century. What is the probability that there is at least one major earthquake in a given decade (assuming the number of earthquakes per decade is Poisson)?
- $1-e^{-\lambda} \lambda^{k} / k$! with $\lambda=.5$ and $k=0$
- A casino deals one million five-card poker hands per year. Approximate the probability that there are exactly 2 royal flush hands during a given year.

Poisson random variable problems

- A country has an average of 2 plane crashes per year.
- How reasonable is it to assume the number of crashes is Poisson with parameter 2?
- Assuming this, what is the probability of exactly 2 crashes? Of zero crashes? Of four crashes?
- $e^{-\lambda} \lambda^{k} / k$! with $\lambda=2$ and k set to 2 or 0 or 4
- A city has an average of five major earthquakes a century. What is the probability that there is at least one major earthquake in a given decade (assuming the number of earthquakes per decade is Poisson)?
- $1-e^{-\lambda} \lambda^{k} / k$! with $\lambda=.5$ and $k=0$
- A casino deals one million five-card poker hands per year. Approximate the probability that there are exactly 2 royal flush hands during a given year.
- Expected number of royal flushes is $\lambda=10^{6} \cdot 4 /\binom{52}{5} \approx 1.54$. Answer is $e^{-\lambda} \lambda^{k} / k!$ with $k=2$.

