BASIC DISCRETE RANDOM VARIABLES X (using q = 1 - p)

- 1. Binomial (n,p): $p_X(k) = \binom{n}{k} p^k q^{n-k}$ and E[X] = np and Var[X] = npq.
- 2. Poisson with mean λ : $p_X(k) = e^{-\lambda} \lambda^k / k!$ and $\text{Var}[X] = \lambda$.
- 3. Geometric $p: p_X(k) = q^{k-1}p$ and E[X] = 1/p and $Var[X] = q/p^2$.
- 4. Negative binomial (n,p): $p_X(k) = {k-1 \choose n-1} p^n q^{k-n}$, E[X] = n/p, $Var[X] = nq/p^2$.

BASIC CONTINUOUS RANDOM VARIABLES X

- 1. Uniform on [a,b]: $f_X(x) = 1/(b-a)$ on [a,b] and E[X] = (a+b)/2 and $Var[X] = (b-a)^2/12$.
- 2. Normal with mean μ variance σ^2 : $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$.
- 3. Exponential with rate λ : $f_X(x) = \lambda e^{-\lambda x}$ (on $[0,\infty)$) and $E[X] = 1/\lambda$ and $Var[X] = 1/\lambda^2$.
- 4. Gamma (n,λ) : $f_X(x) = \frac{\lambda}{\Gamma(n)} e^{-\lambda x} (\lambda x)^{n-1}$ (on $[0,\infty)$) and $E[X] = n/\lambda$ and $Var[X] = n/\lambda^2$.
- 5. Cauchy: $f_X(x) = \frac{1}{\pi(1+x^2)}$ and both E[X] and Var[X] are undefined.
- 6. **Beta** (a,b): $f_X(x) = \frac{x^{a-1}(1-x)^{b-1}}{B(a,b)}$ on [0,1] and E[X] = a/(a+b).

MOMENT GENERATING / CHARACTERISTIC FUNCTIONS

- 1. Discrete: $M_X(t) = E[e^{tX}] = \sum_x p_X(x)e^{tx}$ and $\phi_X(t) = E[e^{itX}] = \sum_x p_X(x)e^{itx}$.
- 2. Continuous: $M_X(t) = E[e^{tX}] = \int_{-\infty}^{\infty} f_X(x)e^{tx}dx$ and $\phi_X(t) = E[e^{itX}] = \int_{-\infty}^{\infty} f_X(x)e^{itx}dx$.
- 3. If X and Y are independent: $M_{X+Y}(t) = M_X(t)M_Y(t)$ and $\phi_{X+Y}(t) = \phi_X(t)\phi_Y(t)$.
- 4. Affine transformations: $M_{aX+b}(t) = e^{bt} M_X(at)$ and $\phi_{aX+b}(t) = e^{ibt} \phi_X(at)$
- 5. Some special cases: if X is normal (0,1), complete-the-square trick gives $M_X(t) = e^{t^2/2}$ and $\phi_X(t) = e^{-t^2/2}$. If X is Poisson λ get "double exponential" $M_X(t) = e^{\lambda(e^{t}-1)}$ and $\phi_X(t) = e^{\lambda(e^{it}-1)}$.

STORIES BEHIND BASIC DISCRETE RANDOM VARIABLES

- 1. **Binomial** (n, p): sequence of n coins, each heads with probability p, have $\binom{n}{k}$ ways to choose a set of k to be heads; have $p^k(1-p)^{n-k}$ chance for each choice. If n=1 then $X \in \{0,1\}$ so $E[X] = E[X^2] = p$, and $Var[X] = E[X^2] E[X]^2 = p p^2 = pq$. Use expectation/variance additivity (for independent coins) for general n.
- 2. **Poisson** λ : $p_X(k)$ is $e^{-\lambda}$ times kth term in Taylor expansion of e^{λ} . Take n very large and let Y be # heads in n tosses of coin with $p = \lambda/n$. Then $E[Y] = np = \lambda$ and $Var(Y) = npq \approx np = \lambda$. Law of Y tends to law of X as $n \to \infty$, so not surprising that $E[X] = Var[X] = \lambda$.
- 3. Geometric p: Probability to have no heads in first k-1 tosses and heads in kth toss is $(1-p)^{k-1}p$. If you think about repeatedly a tossing coin forever, it makes intuitive sense that if you have (in expectation) p heads per toss, then you should need (in expectation) 1/p tosses to get a heads. Variance formula requires calculation, but not surprising that $\operatorname{Var}(X) \approx 1/p^2$ when p is small (when p is small X is kind like of exponential random variable with $p = \lambda$) and $\operatorname{Var}(X) \approx 0$ when p is small.

4. Negative binomial (n, p): If you want nth heads to be on the kth toss then you have to have n-1 heads during first k-1 tosses, and then a heads on the kth toss. Expectations and variance are n times those for geometric (since were're summing n independent geometric random variables).

STORIES BEHIND BASIC CONTINUUM RANDOM VARIABLES

- 1. **Uniform on** [a,b]: Total integral is one, so density is 1/(b-a) on [a,b]. E[X] is midpoint (a+b)/2. When a=0 and b=1, w know $E[X^2]=\int_0^1 x^2 dx=1/3$, so that $\operatorname{Var}(X)=1/3-1/4=12$. Stretching out random variable by (b-a) multiplies variance by $(b-a)^2$.
- 2. Normal (μ, σ^2) : when $\sigma = 1$ and $\mu = 0$ we have $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$. The function $e^{-x^2/2}$ is (up to multiplicative constant) its own Fourier transform. The fact that $\int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}$ came from a cool and hopefully memorable trick involving passing to two dimensions and using polar coordinates. Once one knows the $\sigma = 1, \mu = 0$ case, general case comes from stretching/squashing the distribution by a factor of σ and then translating it by μ .
- 3. **Exponential** λ : Suppose $\lambda = 1$. Then $f_X(x) = e^{-x}$ on $[0, \infty)$. Remember the integration by parts induction that proves $\int_0^\infty e^{-x} x^n = n!$. So E[X] = 1! = 1 and $E[X^2] = 2! = 2$ so that $\operatorname{Var}[X] = 2 1 = 1$. We think of λ as rate ("number of buses per time unit") so replacing 1 by λ multiplies wait time by $1/\lambda$, which leads to $E[X] = 1/\lambda$ and $\operatorname{Var}(X) = 1/\lambda^2$.
- 4. **Gamma** (n, λ) : Again, focus on the $\lambda = 1$ case. Then f_X is just $e^{-x}x^{n-1}$ times the appropriate constant. Since X represents time until nth bus, expectation and variance should be n (by additivity of variance and expectation). If we switch to general λ , we stretch and squash f_X (and adjust expectation and variance accordingly).
- 5. Cauchy: If you remember that $1/(1+x^2)$ is the derivative of arctangent, you can see why this corresponds to the spinning flashlight story and where the $1/\pi$ factor comes from. Asymptotic $1/x^2$ decay rate is why $\int_{-\infty}^{\infty} f_X(x) dx$ is finite but $\int_{-\infty}^{\infty} f_X(x) x dx$ and $\int_{-\infty}^{\infty} f_X(x) x^2 dx$ diverge.
- 6. Beta (a,b): $f_X(x)$ is (up to a constant factor) the probability (as a function of x) that you see a-1 heads and b-1 tails when you toss a+b-2 p-coins with p=x. So makes sense that if Bayesian prior for p is uniform then Bayesian posterior (after seeing a-1 heads and b-1 tails) should be proportional to this. The constant B(a,b) is by definition what makes the total integral one. Expectation formula (which you computed on pset) suggests rough intuition: if you have uniform prior for fraction of people who like new restaurant, and then (a-1) people say they do and (b-1) say they don't, your revised expectation for fraction who like restaurant is $\frac{a}{a+b}$. (You might have guessed $\frac{(a-1)}{(a-1)+(b-1)}$, but that is not correct and you can see why it would be wrong if a-1=0 or b-1=0.)