
Exponentials and normal approximations

18.600 Problem Set 6, due April 7

Welcome to your sixth 18.600 problem set! This problem set features problems about normal
and exponential random variables, along with stories about coins, politics, and a fanciful bac-
terial growth model. We have not yet proved the central limit theorem, but we have presented
a special case: the so called de Moivre-Laplace limit theorem, which already begins to illus-
trate why the normal distribution is so special. Please stop by my weekly office hours (2-249,
Wednesday 3 to 5) for discussion.

A. FROM TEXTBOOK CHAPTER FIVE:

1. Problem 23: One thousand independent rolls of a fair die will be made. Compute an
approximation to the probability that the number 6 will appear between 150 and 200
times inclusively. If the number 6 appears exactly 200 times, find the probability that
the number 5 will appear less than 150 times.

2. Problem 32: The time (in hours) required to repair a machine is an exponentially
distributed random variable with parameter λ = 1/2. What is

(a) the probability that a repair time exceeds 2 hours?

(b) the conditional probability that a repair takes at least 10 hours, given that its
duration exceeds 9 hours?

3. Theoretical Exercise 9: If X is an exponential random variable with parameter λ, and
c > 0, show that cX is exponential with parameter λ/c.

4. Theoretical Exercise 29: Let X be a continuous random variable having cumulative
distribution function F . Define the random variable Y by Y = F (X). Show that Y is
uniformly distributed over (0, 1).

5. Theoretical Exercise 30: Let X have probability density fX . Find the probability density
function of the random variable Y defined by Y = aX + b.

REMARK: If you internalize the idea of the last problem (you understand you how fX is
stretched, squashed, and translated when you replace X by aX + b) it makes it easier to
remember a couple of the formulas on the story sheet. The third problem above is a special
case of the last one.

B. At time zero, a single bacterium in a dish divides into two bacteria. This species of bacteria
has the following property: after a bacterium B divides into two new bacteria B1 and B2, the
subsequent length of time until B1 (resp., B2) divides is an exponential random variable of
rate λ = 1, independently of everything else happening in the dish.
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(a) Compute the expectation of the time Tn at which the number of bacteria reaches n.

(b) Compute the variance of Tn.

(c) Are both of the answers above unbounded, as functions of n? Give a rough numerical
estimate of the values when n = 1050.

Remark: It may seem surprising that the variance is as small as it is. This is similar to
radioactive decay models, where one starts with a large number n of particles, and the time it
takes for the first n/2 to decay has a very small variance and an expectation that doesn’t
much depend on n — so that in chemistry we often talk about “half-life” as if it were a fixed
deterministic quantity of time. In the example above, one can show that the variance of
T2n − Tn is small when n is large (and that the expectation tends to a limit as n→∞) so we
could talk about “doubling time” the same way.

C. In 2007, Diaconis, Holmes, and Montgomery published a paper (look it up) arguing that
when you toss a coin in the air and catch it in your hand, the probability that it lands facing
the same way as it was facing when it started should be (due to precession effects) roughly
.508 (instead of exactly .5). Look up “40,000 coin tosses yield ambiguous evidence for
dynamical bias” to see the work of two Berkeley undergraduates who tried to test this
prediction empirically. In their experiment 20, 245 (about a .506 fraction) of the coins landed
facing the same way they were facing before being tossed. A few relevant questions:

(a) Suppose you toss 40, 000 coins that are truly fair (probably .5) and independent. What
is the standard deviation of the number of heads you see? What is the probability (using
the normal approximation) that the fraction of heads you see is greater than .506?

If X is the number of heads in a single fair coin toss (so X is 0 or 1) then X has expectation .5
and standard deviation .5. If X̃ is the same but with probability .508 of being 1 then
E[X̃]− E[X] = .008. The quantity .008 is about .016 times the standard deviation of X
(which is very close to the standard deviation of X̃). Suppose Y =

∑N
i=1Xi, where the Xi are

independent with the same law as X. Similarly suppose Ỹ =
∑N

i=1 X̃i, where the X̃i are
independent with the same law as X̃.

(b) Show that E[Ỹ ]− E[Y ] is .016
√
N times the standard deviation for Y (which is

approximately the same as the standard deviation of Ỹ ).

Note that if N = 40, 000, we have .016
√
N = 3.2. So Y and Ỹ are both approximately

normally distributed (by de Moivre-Laplace) with similar standard deviations, but with
expectations about 3.2 standard deviations apart. The value the students observed is closer to
the mean of Ỹ than to the mean of Y but the evidence for bias is not overwhelming.

(c) Imagine that we had N = 106 instead of N = 40, 000. How many standard deviations
apart would the means of Y and Ỹ be then? Could you confidentally distinguish
between an instance of Y and an instance of Ỹ ?
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Remark: In this story, X and X̃ have about the same standard deviation and
d = (E[X̃]− E[X])/SD[X] = .016. This ratio is sometimes called Cohen’s d. (Look this up for
a more precise definition.) This ratio is a good indication of how many trials we would need to
detect an effect. If you did N trials and you had

√
Nd > 10 then you could detect the effect

very convincingly with very high probability. In practice it is often hard to do N = 100/d2

independent trials when d is small. Moreover, even if we found the research budget to toss
400, 000 coins, we would not know whether coins tossed in real life scenarios (e.g. sporting
events) had the same probabilities as coins tossed by weary researchers doing hundreds in a
row.

Remark: The third significant digit of a coin toss probability may seem unimportant (albeit
undeniably interesting). But imagine that every year 106 people worldwide have a specific
kind of heart attack. There is one treatment that allows them to survive with probability .5
and another that allows them to survive with probability .508. If you could demonstrate this
and get people to switch to the second treatment, you could save (in expectation) thousands of
lives per year. But as a practical matter it might be impossible to do a large enough controlled
trial to demonstrate the effect. It is (to put it mildly) harder to arrange a randomized
experiment on a heart attack victim than it is to toss a coin.

Remark: You might even have trouble distinguishing between a treatment that gives a .4
chance of survival and one that gives a .6 chance. Yes, a trial with a few thousand people
would overwhelmingly demonstrate the effect (and a trial with 100 people would probably at
least suggest the right answer) but there is no guarantee that the right kind of clinical trial has
been (or even can be) done — or that your busy doctor is up to date on the latest research
(especially if your condition arises infrequently). Collecting and utilizing data effectively is a
huge challenge.

D. In Open Primary Land, there are two political parties competing to elect a senator. There
is first a primary election for each party to select a nominee. Then there is a general election
between the two party nominees. A voter can vote in either party’s primary, but not in both.
Suppose that A1 and A2 are the only two viable candidates in the first party’s primary and B1

and B2 are the only two viable candidates in the second party’s primary. Let Pi,j be the
probability that Ai would beat Bj if those two faced each other in the general election. Let
V (A1), V (A2), V (B1), V (B2) be the values you assign to the various candidates, and assume
that your sole goal is to maximize E[V (W )] where W is the overall election winner.

(a) Check that V (Ai, Bj) := Pi,jV (Ai) + (1− Pi,j)V (Bj) is the expectation of V (W ) given
that Ai and Bj win the primaries.

Now, to determine your optimal primary vote, you need only figure out how to maximize
E[V (A,B)], where A and B are the primary winners. Assume that (aside from you) an even
number of people vote in each primary (with fair coin tosses used to break ties).
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(b) Argue that if you vote for candidate A1 the expected value of your vote is

1

2
p1
(
V (A1, B1)− V (A2, B1)

)
+

1

2
p2
(
V (A1, B2)− V (A2, B2)

)
where pi is the probability that Bi wins the second primary and the first primary voters
are tied without you, so that your vote swings the election to A1. (To explain the 1

2
factor, recall that a coin toss takes your place if you don’t vote.) You can compute
values for other candidates similarly. You want to maximize your vote’s expected value.

(c) Argue that the expected value of voting for A2 is minus one times the expected value of
voting for A1 (similarly for B1 and B2).

(d) Argue that if you replaced V with −V then your choice of which primary to vote in
would stay the same, but your choice of which candidate to vote for would change.

Remark: The result of (d) suggests that a far-right voter (who just wants to pull the country
as far right as possible) and a far-left voter (who just wants to pull the country as far left as
possible) should actually vote in the same primary. Roughly speaking, they find the primary
in which a vote makes the most marginal difference and they both vote there (albeit for
different candidates). This may seem surprising, because many people assume that far-right
voters should always vote in the further right party’s primary and that far-left voters should
always vote in the further left party’s primary (even when rules explicitly encourage voters to
vote in whichever primary they like). There are no doubt be many reasons for this, but part of
the reason may be that calculating the expected impact of a primary vote is complicated and
unintuitive. Perhaps somebody should make an app so that you just plug in
V (A1), V (A2), V (B1), V (B2) (perhaps normalized so that your favorite candidate has score
100 and your least favorite has score 0) and the app estimates the relevant probabilities from
prediction markets and polls and tells you how to vote. In the meantime, the simple “vote for
the candidate you like most” strategy seems likely to remain popular.

Remark on reasons for things: If you toss 101 fair coins, a binomial calculation shows that
there is about a .15 chance that the number of heads will be 50 or 51, so that a heads vs. tails
majority vote comes down to one vote. If, for example, there turn out to be exactly 50 heads,
you can say that any of the 51 tails votes could have swung the election outcome if had they
voted differently. So it may be technically accurate, albeit misleading, to say “Heads lost
because the 7th coin was tails” and “heads lost because the 19th coin wasn’t heads” and “tails
won because the 78th coin was tails” and so forth. If you google the phrases “won because”
and “lost because” (or “didn’t win because” and “didn’t lose because”) in quotes you’ll find
lots of similarly dubious attempts to declare that certain factors in close political elections and
sporting events were or weren’t the reason. Of course, when a contest is close, it may be
accurate (if banal) to say nearly every factor was decisive. Yet humans seem oddly attached to
the idea that things happen for specific reasons. (Any specific reason for this?)
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