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Overview

I The mathematics of today’s lecture will not go far beyond
things we know.

I Main mathematical tasks will be to compute expectations of
functions of log-normal random variables (to get the
Black-Scholes formula) and differentiate under an integral (to
compute risk neutral density functions from option prices).

I Will spend time giving financial interpretations of the math.

I Can interpret this lecture as a sophisticated story problem,
illustrating an important application of the probability we have
learned in this course (involving probability axioms,
expectations, cumulative distribution functions, risk neutral
probability, etc.)
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Interest discounted asset prices as martingales

I If r is risk free interest rate, then by definition, price of a
contract paying dollar at time T if A occurs is PRN(A)e−rT .

I If A and B are disjoint, what is the price of a contract that
pays 2 dollars if A occurs, 3 if B occurs, 0 otherwise?

I Answer: (2PRN(A) + 3PRN(B))e−rT .
I Generally, in absence of arbitrage, price of contract that pays

X at time T should be ERN(X )e−rT where ERN denotes
expectation with respect to the risk neutral probability.

I Example: if a non-divided paying stock will be worth X at
time T , then its price today should be ERN(X )e−rT .

I Risk neutral probability basically defined so price of asset
today is e−rT times risk neutral expectation of time T price.

I In particular, the risk neutral expectation of tomorrow’s
(interest discounted) stock price is today’s stock price.

I Implies fundamental theorem of asset pricing, which says
discounted price X (n)

A(n) (where A is a risk-free asset) is a
martingale with respected to risk neutral probability.
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Black-Scholes: main assumption and conclusion

I More famous MIT professors: Black, Scholes, Merton.

I 1997 Nobel Prize.

I Assumption: the log of an asset price X at fixed future time
T is a normal random variable (call it N) with some known
variance (call it Tσ2) and some mean (call it µ) with respect
to risk neutral probability.

I Observation: N normal (µ,Tσ2) implies E [eN ] = eµ+Tσ2/2.

I Observation: If X0 is the current price then
X0 = ERN [X ]e−rT = ERN [eN ]e−rT = eµ+(σ2/2−r)T .

I Observation: This implies µ = logX0 + (r − σ2/2)T .

I General Black-Scholes conclusion: If g is any function then
the price of a contract that pays g(X ) at time T is

ERN [g(X )]e−rT = ERN [g(eN)]e−rT

where N is normal with mean µ and variance Tσ2.
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Black-Scholes example: European call option

I A European call option on a stock at maturity date T ,
strike price K , gives the holder the right (but not obligation)
to purchase a share of stock for K dollars at time T .

The document gives the
bearer the right to pur-
chase one share of MSFT
from me on May 31 for
35 dollars. SS

I If X is the value of the stock at T , then the value of the
option at time T is given by g(X ) = max{0,X − K}.

I Black-Scholes: price of contract paying g(X ) at time T is
ERN [g(X )]e−rT = ERN [g(eN)]e−rT where N is normal with
variance Tσ2, mean µ = logX0 + (r − σ2/2)T .

I Write this as

e−rTERN [max{0, eN − K}] = e−rTERN [(eN − K )1N≥logK ]

=
e−rT

σ
√

2πT

∫ ∞
logK

e−
(x−µ)2

2Tσ2 (ex − K )dx .
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The famous formula

I Let T be time to maturity, X0 current price of underlying
asset, K strike price, r risk free interest rate, σ the volatility.

I We need to compute e−rT
∫∞
logK e−

(x−µ)2

2Tσ2 (ex − K )dx where

µ = rT + logX0 − Tσ2/2.

I Can use complete-the-square tricks to compute the two terms
explicitly in terms of standard normal cumulative distribution
function Φ.

I Price of European call is Φ(d1)X0 − Φ(d2)Ke−rT where

d1 =
ln(

X0
K
)+(r+σ2

2
)(T )

σ
√
T

and d2 =
ln(

X0
K
)+(r−σ2

2
)(T )

σ
√
T

.



The famous formula

I Let T be time to maturity, X0 current price of underlying
asset, K strike price, r risk free interest rate, σ the volatility.

I We need to compute e−rT
∫∞
logK e−

(x−µ)2

2Tσ2 (ex − K )dx where

µ = rT + logX0 − Tσ2/2.

I Can use complete-the-square tricks to compute the two terms
explicitly in terms of standard normal cumulative distribution
function Φ.

I Price of European call is Φ(d1)X0 − Φ(d2)Ke−rT where

d1 =
ln(

X0
K
)+(r+σ2

2
)(T )

σ
√
T

and d2 =
ln(

X0
K
)+(r−σ2

2
)(T )

σ
√
T

.



The famous formula

I Let T be time to maturity, X0 current price of underlying
asset, K strike price, r risk free interest rate, σ the volatility.

I We need to compute e−rT
∫∞
logK e−

(x−µ)2

2Tσ2 (ex − K )dx where

µ = rT + logX0 − Tσ2/2.

I Can use complete-the-square tricks to compute the two terms
explicitly in terms of standard normal cumulative distribution
function Φ.

I Price of European call is Φ(d1)X0 − Φ(d2)Ke−rT where

d1 =
ln(

X0
K
)+(r+σ2

2
)(T )

σ
√
T

and d2 =
ln(

X0
K
)+(r−σ2

2
)(T )

σ
√
T

.



The famous formula

I Let T be time to maturity, X0 current price of underlying
asset, K strike price, r risk free interest rate, σ the volatility.

I We need to compute e−rT
∫∞
logK e−

(x−µ)2

2Tσ2 (ex − K )dx where

µ = rT + logX0 − Tσ2/2.

I Can use complete-the-square tricks to compute the two terms
explicitly in terms of standard normal cumulative distribution
function Φ.

I Price of European call is Φ(d1)X0 − Φ(d2)Ke−rT where

d1 =
ln(

X0
K
)+(r+σ2

2
)(T )

σ
√
T

and d2 =
ln(

X0
K
)+(r−σ2

2
)(T )

σ
√
T

.



Outline

Black-Scholes

Call quotes and risk neutral probability



Outline

Black-Scholes

Call quotes and risk neutral probability



Determining risk neutral probability from call quotes

I If C (K ) is price of European call with strike price K and
f = fX is risk neutral probability density function for X at
time T , then C (K ) = e−rT

∫∞
−∞ f (x) max{0, x − K}dx .

I Differentiating under the integral, we find that

erTC ′(K ) =

∫
f (x)(−1x>K )dx = −PRN{X > K} = FX (K )−1,

erTC ′′(K ) = f (K ).

I We can look up C (K ) for a given stock symbol (say GOOG)
and expiration time T at cboe.com and work out
approximately what FX and hence fX must be.

I Try this out for near term option (so erT is essentially one).
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Perspective: implied volatility

I Risk neutral probability densities derived from call quotes are
not quite lognormal in practice. Tails are too fat. Main
Black-Scholes assumption is only approximately correct.

I “Implied volatility” is the value of σ that (when plugged into
Black-Scholes formula along with known parameters) predicts
the current market price.

I If Black-Scholes were completely correct, then given a stock
and an expiration date, the implied volatility would be the
same for all strike prices. In practice, when the implied
volatility is viewed as a function of strike price (sometimes
called the “volatility smile”), it is not constant.
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Perspective: why is Black-Scholes not exactly right?

I Main Black-Scholes assumption: risk neutral probability
densities are lognormal.

I Heuristic support for this assumption: If price goes up 1
percent or down 1 percent each day (with no interest) then
the risk neutral probability must be .5 for each (independently
of previous days). Central limit theorem gives log normality
for large T .

I Replicating portfolio point of view: in the simple binary
tree models (or continuum Brownian models), we can transfer
money back and forth between the stock and the risk free
asset to ensure our wealth at time T equals the option payout.
Option price is required initial investment, which is risk neutral
expectation of payout. “True probabilities” are irrelevant.

I Where arguments for assumption break down: Fluctuation
sizes vary from day to day. Prices can have big jumps.

I Fixes: variable volatility, random interest rates, Lévy jumps....
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Perspective: why is Black-Scholes not exactly right?

I Main Black-Scholes assumption: risk neutral probability
densities are lognormal.

I Heuristic support for this assumption: If price goes up 1
percent or down 1 percent each day (with no interest) then
the risk neutral probability must be .5 for each (independently
of previous days). Central limit theorem gives log normality
for large T .

I Replicating portfolio point of view: in the simple binary
tree models (or continuum Brownian models), we can transfer
money back and forth between the stock and the risk free
asset to ensure our wealth at time T equals the option payout.
Option price is required initial investment, which is risk neutral
expectation of payout. “True probabilities” are irrelevant.

I Where arguments for assumption break down: Fluctuation
sizes vary from day to day. Prices can have big jumps.

I Fixes: variable volatility, random interest rates, Lévy jumps....
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