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Summing two random variables

» Say we have independent random variables X and Y and we
know their density functions fx and fy.

» Now let's try to find Fxyy(a) = P{X + Y < a}.

» This is the integral over {(x,y) : x +y < a} of
f(x,y) = fx(x)fy(y). Thus,

P{X+Y <a}= / / y)dxdy

:/_ Fx(a— )fy( )d .

» Differentiating both sides gives
ferv(a) = g5 [ 7o Fx(a=y)fy(y)dy = 73 fx(a=y)fy(y)dy.
» Latter formula makes some intuitive sense. We're integrating
over the set of x, y pairs that add up to a.
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Independent identically distributed (i.i.d.)

» The abbreviation i.i.d. means independent identically
distributed.

» It is actually one of the most important abbreviations in
probability theory.

» Worth memorizing.
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Summing i.i.d. uniform random variables

» Suppose that X and Y are i.i.d. and uniform on [0,1]. So
fx = fy =1on [0, l].

» What is the probability density function of X + Y7

> feiv(a) = [ fx(a—y)fr(y)dy = [ fx(a—y) which is
the length of [0,1] N [a—1,a].

» That's a when a € [0,1] and 2 — a when a € [1,2] and 0
otherwise.



Review: summing i.i.d. geometric random variables

> A geometric random variable X with parameter p has
P{X =k} = (1— p)k~ip for k > 1.



Review: summing i.i.d. geometric random variables

> A geometric random variable X with parameter p has
P{X =k} = (1— p)k~ip for k > 1.
» Sum Z of n independent copies of X7



Review: summing i.i.d. geometric random variables

> A geometric random variable X with parameter p has
P{X =k} = (1— p)k~ip for k > 1.
» Sum Z of n independent copies of X7

» We can interpret Z as time slot where nth head occurs in
i.i.d. sequence of p-coin tosses.
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v

A geometric random variable X with parameter p has
P{X =k} = (1— p)k~ip for k > 1.
Sum Z of n independent copies of X7

v

» We can interpret Z as time slot where nth head occurs in
i.i.d. sequence of p-coin tosses.

v

So Zis negative binomial (n, p). So
P{Z =k} = (“)pm (1= p)<p.
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>

Suppose Xi,...X, are i.i.d. exponential random variables with
parameter \. So fx.(x) = Ae ™ on [0,00) for all 1 < i < n.

What is the law of Z = > | Xi?

We claimed in an earlier lecture that this was a gamma
distribution with parameters (A, n).

Y n—
So f7(y) = %;\’)Y)l

v

v

v



Summing i.i.d. exponential random variables

» Suppose Xi,...X, are i.i.d. exponential random variables with
parameter \. So fx.(x) = Ae ™ on [0,00) for all 1 < i < n.

» What is the law of Z =>"7" | Xi?

» We claimed in an earlier lecture that this was a gamma
distribution with parameters (A, n).

> So fz(y) = %

» We argued this point by taking limits of negative binomial
distributions. Can we check it directly?



Summing i.i.d. exponential random variables

» Suppose Xi,...X, are i.i.d. exponential random variables with
parameter \. So fx.(x) = Ae ™ on [0,00) for all 1 < i < n.

» What is the law of Z =>"7" | Xi?

» We claimed in an earlier lecture that this was a gamma
distribution with parameters (A, n).

> So fz(y) = %

» We argued this point by taking limits of negative binomial
distributions. Can we check it directly?

» By induction, would suffice to show that a gamma (A, 1) plus
an independent gamma (\, n) is a gamma (A, n+ 1).
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Summing independent gamma random variables

» Say X is gamma (A, s), Y is gamma (A, t), and X and Y are
independent.

> Intuitively, X is amount of time till we see s events, and Y is
amount of subsequent time till we see t more events.

—Ax(\x)s—1 - t—1
> So fix(x) = 2 and fy(y) = 2

» Now fxyy(a) = [T fx(a—y)fy(y)dy.
» Up to an a-independent multiplicative constant, this is

/a ef)\(afy)(a_y)sflef)\yytfldy — ef)\a /a(a_y)SIytldy'
0 0

» Letting x = y/a, this becomes
e—)\aas—i—t—l fol(]' o X)S_lxt_ldX.

» This is (up to multiplicative constant) e™*?aTt~1. Constant
must be such that integral from —oo to oo is 1. Conclude
that X + Y is gamma (A, s + t).



Summing two normal variables

» X is normal with mean zero, variance a%, Y is normal with

mean zero, variance O'g.



Summing two normal variables

» X is normal with mean zero, variance a%, Y is normal with

mean zero, variance O'g.
2

2

=X_
1 20'%

> fx(x) = ﬁalekf and fy(y) = Taros €




Summing two normal variables

» X is normal with mean zero, variance a%, Y is normal with
mean zero, variance o3

2-
2 2
_ 1 262 _ 1 202
> fx(x) = VT 71 and fy(y) = VT o5

» We just need to compute fxiy(a) = [*° fx(a—y)fy(y)dy.



Summing two normal variables

» X is normal with mean zero, variance O’%, Y is normal with

mean zero, variance o3.
) 2
22 7
> fx(x) = ==—e%1 and fy(y) = —e?2 .

\/Edl \/EO'Z
» We just need to compute fxiy(a) = [*° fx(a—y)fy(y)dy.

» We could compute this directly.



Summing two normal variables

» X is normal with mean zero, variance O’%, Y is normal with
mean zero, variance 05.

;XZ ;}’2
1 1 20'%

> fx(x) = \/Emeh% and fy(y) = Taros €
» We just need to compute fxiy(a) = [*° fx(a—y)fy(y)dy.

» We could compute this directly.

» Or we could argue with a multi-dimensional bell curve picture
that if X and Y have variance 1 then f; x4,y is the density
of a normal random variable (and note that variances and
expectations are additive).



Summing two normal variables

» X is normal with mean zero, variance O’%, Y is normal with

mean zero, variance o3.
) 2
2 7
> fx(x) = ==—e%1 and fy(y) = —e?2 .

\/ﬂal \/EO'Z
» We just need to compute fxiy(a) = [*° fx(a—y)fy(y)dy.

» We could compute this directly.

» Or we could argue with a multi-dimensional bell curve picture
that if X and Y have variance 1 then f; x4,y is the density
of a normal random variable (and note that variances and
expectations are additive).

» Or use fact that if A; € {—1,1} are i.i.d. coin tosses then
ﬁ 27:2’1\/ A; is approximately normal with variance o2 when
N is large.



Summing two normal variables

» X is normal with mean zero, variance a%, Y is normal with

mean zero, variance o3.
—x2 *}’2
1 202 1 202
| 2 = 1 = 2
x(x) VT and fy(y) T €

» We just need to compute fxiy(a) = [*° fx(a—y)fy(y)dy.
» We could compute this directly.

» Or we could argue with a multi-dimensional bell curve picture
that if X and Y have variance 1 then f; x4,y is the density
of a normal random variable (and note that variances and
expectations are additive).

» Or use fact that if A; € {—1,1} are i.i.d. coin tosses then
ﬁ 27:2’1\/ A; is approximately normal with variance o2 when
N is large.

» Generally: if independent random variables X; are normal
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» Sum of an independent binomial (m, p) and binomial (n, p)?

> Yes, binomial (m+ n, p). Can be seen from coin toss
interpretation.

» Sum of independent Poisson A1 and Poisson A7

» Yes, Poisson A1 + Ap. Can be seen from Poisson point process
interpretation.



