Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions
Outline

Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions
Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}_n' = \sigma(X_n, X_{n+1}, \ldots)$ and $\mathcal{T} = \bigcap_n \mathcal{F}_n'$.

\mathcal{T} is called the tail σ-algebra. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_n are changed.

Event that X_n converge to a limit is example of a tail event. Other examples?

Theorem: If X_1, X_2, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}$.
Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}'_n = \sigma(X_n, X_{n+1}, \ldots)$ and $\mathcal{T} = \cap_n \mathcal{F}'_n$.

\mathcal{T} is called the **tail σ-algebra**. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_n are changed.
Kolmogorov zero-one law

- Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}'_n = \sigma(X_n, X_{n+1}, \ldots)$ and $\mathcal{T} = \bigcap_n \mathcal{F}'_n$.
- \mathcal{T} is called the **tail σ-algebra**. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_n are changed.
- Event that X_n converge to a limit is example of a tail event. Other examples?

18.175 Lecture 8
Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}'_n = \sigma(X_n, X_{n+1}, \ldots)$ and $\mathcal{T} = \cap_n \mathcal{F}'_n$.

\mathcal{T} is called the **tail σ-algebra**. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn’t change when finitely many X_n are changed.

Event that X_n converge to a limit is example of a tail event. Other examples?

Theorem: If X_1, X_2, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}$.
Theorem: If X_1, X_2, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}$.
Theorem: If X_1, X_2, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}$.

Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., $P(A) = P(A \cap A) = P(A)^2$. How do we prove that?
Theorem: If X_1, X_2, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}$.

Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., $P(A) = P(A \cap A) = P(A)^2$. How do we prove that?

Recall theorem that if \mathcal{A}_i are independent π-systems, then σA_i are independent.
Theorem: If X_1, X_2, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}$.

Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., $P(A) = P(A \cap A) = P(A)^2$. How do we prove that?

Recall theorem that if A_i are independent π-systems, then σA_i are independent.

Deduce that $\sigma(X_1, X_2, \ldots, X_n)$ and $\sigma(X_{n+1}, X_{n+2}, \ldots)$ are independent. Then deduce that $\sigma(X_1, X_2, \ldots)$ and \mathcal{T} are independent, using fact that $\bigcup_k \sigma(X_1, \ldots, X_k)$ and \mathcal{T} are π-systems.
Theorem: Suppose X_i are independent with mean zero and finite variances, and $S_n = \sum_{i=1}^{n} X_n$. Then

$$P(\max_{1 \leq k \leq n} |S_k| \geq x) \leq x^{-2} \text{Var}(S_n) = x^{-2} E|S_n|^2.$$
Theorem: Suppose X_i are independent with mean zero and finite variances, and $S_n = \sum_{i=1}^{n} X_n$. Then

$$P\left(\max_{1\leq k \leq n} |S_k| \geq x\right) \leq x^{-2} \text{Var}(S_n) = x^{-2} E|S_n|^2.$$

Main idea of proof: Consider first time maximum is exceeded. Bound below the expected square sum on that event.
Kolmogorov three-series theorem

Theorem: Let X_1, X_2, \ldots be independent and fix $A > 0$. Write $Y_i = X_i 1(|X_i| \leq A)$. Then $\sum X_i$ converges a.s. if and only if the following are all true:

- $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$
- $\sum_{n=1}^{\infty} EY_n$ converges
- $\sum_{n=1}^{\infty} \text{Var}(Y_n) < \infty$

Main ideas behind the proof:
Kolmogorov zero-one law implies that $\sum X_i$ converges with probability $p \in \{0, 1\}$. We just have to show that $p = 1$ when all hypotheses are satisfied (sufficiency of conditions) and $p = 0$ if any one of them fails (necessity).

To prove sufficiency, apply Borel-Cantelli to see that the probability that $X_n \neq Y_n$ i.o. is zero. Subtract means from Y_n, reduce to case that each Y_n has mean zero. Apply Kolmogorov maximal inequality.
Theorem: Let X_1, X_2, \ldots be independent and fix $A > 0$. Write $Y_i = X_i 1(|X_i| \leq A)$. Then $\sum X_i$ converges a.s. if and only if the following are all true:

1. $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$
Theorem: Let X_1, X_2, \ldots be independent and fix $A > 0$. Write $Y_i = X_i 1(|X_i| \leq A)$. Then $\sum X_i$ converges a.s. if and only if the following are all true:

- $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$
- $\sum_{n=1}^{\infty} EY_n$ converges
- Kolmogorov zero-one law implies that $\sum X_i$ converges with probability $p \in \{0, 1\}$. We just have to show that $p = 1$ when all hypotheses are satisfied (sufficiency of conditions) and $p = 0$ if any one of them fails (necessity).

To prove sufficiency, apply Borel-Cantelli to see that probability that $X_n \neq Y_n$ i.o. is zero. Subtract means from Y_n, reduce to case that each Y_n has mean zero. Apply Kolmogorov maximal inequality.
Theorem: Let X_1, X_2, \ldots be independent and fix $A > 0$. Write $Y_i = X_i 1(|X_i| \leq A)$. Then $\sum X_i$ converges a.s. if and only if the following are all true:

- $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$
- $\sum_{n=1}^{\infty} EY_n$ converges
- $\sum_{n=1}^{\infty} \text{Var}(Y_n) < \infty$
Theorem: Let X_1, X_2, \ldots be independent and fix $A > 0$. Write $Y_i = X_i 1(|X_i| \leq A)$. Then $\sum X_i$ converges a.s. if and only if the following are all true:

- $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$
- $\sum_{n=1}^{\infty} EY_n$ converges
- $\sum_{n=1}^{\infty} \text{Var}(Y_n) < \infty$

Main ideas behind the proof: Kolmogorov zero-one law implies that $\sum X_i$ converges with probability $p \in \{0, 1\}$. We just have to show that $p = 1$ when all hypotheses are satisfied (sufficiency of conditions) and $p = 0$ if any one of them fails (necessity).
Theorem: Let X_1, X_2, \ldots be independent and fix $A > 0$. Write $Y_i = X_i 1_{(|X_i| \leq A)}$. Then $\sum X_i$ converges a.s. if and only if the following are all true:

- $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$
- $\sum_{n=1}^{\infty} EY_n$ converges
- $\sum_{n=1}^{\infty} \text{Var}(Y_n) < \infty$

Main ideas behind the proof: Kolmogorov zero-one law implies that $\sum X_i$ converges with probability $p \in \{0, 1\}$. We just have to show that $p = 1$ when all hypotheses are satisfied (sufficiency of conditions) and $p = 0$ if any one of them fails (necessity).

To prove sufficiency, apply Borel-Cantelli to see that probability that $X_n \neq Y_n$ i.o. is zero. Subtract means from Y_n, reduce to case that each Y_n has mean zero. Apply Kolmogorov maximal inequality.
Outline

Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions
Outline

Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions
Recall: moment generating functions

Let X be a random variable.
Recall: moment generating functions

- Let X be a random variable.
- The **moment generating function** of X is defined by $M(t) = M_X(t) := E[e^{tX}]$.
Recall: moment generating functions

- Let X be a random variable.
- The **moment generating function** of X is defined by $M(t) = M_X(t) := E[e^{tX}]$.

18.175 Lecture 8
Recall: moment generating functions

- Let X be a random variable.
- The **moment generating function** of X is defined by $M(t) = M_X(t) := E[e^{tX}]$.
- When X is discrete, can write $M(t) = \sum_x e^{tx} p_X(x)$. So $M(t)$ is a weighted average of countably many exponential functions.
Recall: moment generating functions

- Let X be a random variable.
- The **moment generating function** of X is defined by $M(t) = M_X(t) := E[e^{tX}]$.
- When X is discrete, can write $M(t) = \sum_x e^{tx}p_X(x)$. So $M(t)$ is a weighted average of countably many exponential functions.
- When X is continuous, can write $M(t) = \int_{-\infty}^{\infty} e^{tx}f(x)dx$. So $M(t)$ is a weighted average of a continuum of exponential functions.
Recall: moment generating functions

- Let X be a random variable.
- The **moment generating function** of X is defined by $M(t) = M_X(t) := E[e^{tX}]$.
- When X is discrete, can write $M(t) = \sum_x e^{tx}p_X(x)$. So $M(t)$ is a weighted average of countably many exponential functions.
- When X is continuous, can write $M(t) = \int_{-\infty}^{\infty} e^{tx}f(x)dx$. So $M(t)$ is a weighted average of a continuum of exponential functions.
- We always have $M(0) = 1$.
Recall: moment generating functions

- Let X be a random variable.
- The **moment generating function** of X is defined by $M(t) = M_X(t) := E[e^{tX}]$.
- When X is discrete, can write $M(t) = \sum_x e^{tx} p_X(x)$. So $M(t)$ is a weighted average of countably many exponential functions.
- When X is continuous, can write $M(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$. So $M(t)$ is a weighted average of a continuum of exponential functions.
- We always have $M(0) = 1$.
- If $b > 0$ and $t > 0$ then $E[e^{tX}] \geq E[e^{t \min\{X, b\}}] \geq P\{X \geq b\} e^{tb}$.

18.175 Lecture 8
Recall: moment generating functions

- Let X be a random variable.
- The **moment generating function** of X is defined by $M(t) = M_X(t) := E[e^{tX}]$.
- When X is discrete, can write $M(t) = ∑_x e^{tx}p_X(x)$. So $M(t)$ is a weighted average of countably many exponential functions.
- When X is continuous, can write $M(t) = ∫_{−∞}^{∞} e^{tx}f(x)dx$. So $M(t)$ is a weighted average of a continuum of exponential functions.
- We always have $M(0) = 1$.
- If $b > 0$ and $t > 0$ then $E[e^{tX}] ≥ E[e^{t\min\{X,b\}}] ≥ P\{X ≥ b\}e^{tb}$.
- If X takes both positive and negative values with positive probability then $M(t)$ grows at least exponentially fast in $|t|$ as $|t| → ∞$.

18.175 Lecture 8
We showed that if $Z = X + Y$ and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$.
Recall: moment generating functions for i.i.d. sums

- We showed that if $Z = X + Y$ and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$
- If $X_1 \ldots X_n$ are i.i.d. copies of X and $Z = X_1 + \ldots + X_n$ then what is M_Z?
Recall: moment generating functions for i.i.d. sums

- We showed that if $Z = X + Y$ and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$
- If $X_1 \ldots X_n$ are i.i.d. copies of X and $Z = X_1 + \ldots + X_n$ then what is M_Z?
- Answer: M_X^n. Follows by repeatedly applying formula above.
Recall: moment generating functions for i.i.d. sums

- We showed that if \(Z = X + Y \) and \(X \) and \(Y \) are independent, then \(M_Z(t) = M_X(t)M_Y(t) \).
- If \(X_1 \ldots X_n \) are i.i.d. copies of \(X \) and \(Z = X_1 + \ldots + X_n \) then what is \(M_Z \)?
- Answer: \(M_X^n \). Follows by repeatedly applying formula above.
- This a big reason for studying moment generating functions. It helps us understand what happens when we sum up a lot of independent copies of the same random variable.
Consider i.i.d. random variables X_i. Want to show that if $\phi(\theta) := M_{X_i}(\theta) = E \exp(\theta X_i)$ is less than infinity for some $\theta > 0$, then $P(S_n \geq na) \to 0$ exponentially fast when $a > E[X_i]$. \[\text{Kind of a quantitative form of the weak law of large numbers.}\]

The empirical average A_n is very unlikely to be ϵ away from its expected value (where “very” means with probability less than some exponentially decaying function of n). \[\text{Write } \gamma(a) = \lim_{n \to \infty} \frac{1}{n} \log P(S_n \geq na). \text{ It gives the “rate” of exponential decay as a function of } a.\]
Consider i.i.d. random variables X_i. Want to show that if $\phi(\theta) := M_{X_i}(\theta) = E \exp(\theta X_i)$ is less than infinity for some $\theta > 0$, then $P(S_n \geq na) \to 0$ exponentially fast when $a > E[X_i]$.

Kind of a quantitative form of the weak law of large numbers. The empirical average A_n is very unlikely to be ϵ away from its expected value (where “very” means with probability less than some exponentially decaying function of n).
Consider i.i.d. random variables X_i. Want to show that if $\phi(\theta) := M_{X_i}(\theta) = E \exp(\theta X_i)$ is less than infinity for some $\theta > 0$, then $P(S_n \geq na) \to 0$ exponentially fast when $a > E[X_i]$.

Kind of a quantitative form of the weak law of large numbers. The empirical average A_n is very unlikely to be ϵ away from its expected value (where “very” means with probability less than some exponentially decaying function of n).

Write $\gamma(a) = \lim_{n \to \infty} \frac{1}{n} \log P(S_n \geq na)$. It gives the “rate” of exponential decay as a function of a.

18.175 Lecture 8
Outline

Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions
Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions
DeMoivre-Laplace limit theorem

Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^{n} X_i$.

Suppose each X_i is 1 with probability p and 0 with probability $q = 1 - p$.

DeMoivre-Laplace limit theorem:
$$\lim_{n \to \infty} P\{a \leq S_n - np \sqrt{npq} \leq b\} \to \Phi(b) - \Phi(a),$$

Here $\Phi(b) - \Phi(a) = P\{a \leq Z \leq b\}$ when Z is a standard normal random variable.

$S_n - np \sqrt{npq}$ describes "number of standard deviations that S_n is above or below its mean".

Proof idea: use binomial coefficients and Stirling's formula.

Question: Does similar statement hold if X_i are i.i.d. from some other law?

Central limit theorem: Yes, if they have finite variance.
DeMoivre-Laplace limit theorem

- Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^{n} X_i$.
- Suppose each X_i is 1 with probability p and 0 with probability $q = 1 - p$.

DeMoivre-Laplace limit theorem:

$$\lim_{n \to \infty} P\{a \leq S_n - np \leq b \sqrt{npq}\} \to \Phi(b) - \Phi(a).$$

Here $\Phi(b) - \Phi(a) = P\{a \leq Z \leq b\}$ when Z is a standard normal random variable.

- $S_n - np \sqrt{npq}$ describes "number of standard deviations that S_n is above or below its mean".
- Proof idea: use binomial coefficients and Stirling's formula.

Question: Does similar statement hold if X_i are i.i.d. from some other law?

Central limit theorem: Yes, if they have finite variance.
Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^{n} X_n$.

Suppose each X_i is 1 with probability p and 0 with probability $q = 1 - p$.

DeMoivre-Laplace limit theorem:

\[
\lim_{n \to \infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).
\]

Here $\Phi(b) - \Phi(a) = P\{a \leq Z \leq b\}$ when Z is a standard normal random variable.

Proof idea: use binomial coefficients and Stirling's formula.

Question: Does similar statement hold if X_i are i.i.d. from some other law?

Central limit theorem: Yes, if they have finite variance.
Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^{n} X_i$.

Suppose each X_i is 1 with probability p and 0 with probability $q = 1 - p$.

DeMoivre-Laplace limit theorem:

$$
\lim_{n \to \infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).
$$

Here $\Phi(b) - \Phi(a) = P\{a \leq Z \leq b\}$ when Z is a standard normal random variable.
DeMoivre-Laplace limit theorem

- Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^{n} X_i$.
- Suppose each X_i is 1 with probability p and 0 with probability $q = 1 - p$.
- **DeMoivre-Laplace limit theorem:**

 $$\lim_{n \to \infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

- Here $\Phi(b) - \Phi(a) = P\{a \leq Z \leq b\}$ when Z is a standard normal random variable.
- $\frac{S_n-np}{\sqrt{npq}}$ describes “number of standard deviations that S_n is above or below its mean”.
DeMoivre-Laplace limit theorem

- Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^{n} X_i$.
- Suppose each X_i is 1 with probability p and 0 with probability $q = 1 - p$.
- **DeMoivre-Laplace limit theorem:**

$$\lim_{n \to \infty} P\left\{ a \leq \frac{S_n - np}{\sqrt{npq}} \leq b \right\} \to \Phi(b) - \Phi(a).$$

- Here $\Phi(b) - \Phi(a) = P\{a \leq Z \leq b\}$ when Z is a standard normal random variable.
- $\frac{S_n - np}{\sqrt{npq}}$ describes “number of standard deviations that S_n is above or below its mean”.
- **Proof idea:** use binomial coefficients and Stirling’s formula.
DeMoivre-Laplace limit theorem

- Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^{n} X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability $q = 1 - p$.
- **DeMoivre-Laplace limit theorem:**
 \[
 \lim_{n \to \infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).
 \]
- Here $\Phi(b) - \Phi(a) = P\{a \leq Z \leq b\}$ when Z is a standard normal random variable.
- $\frac{S_n - np}{\sqrt{npq}}$ describes “number of standard deviations that S_n is above or below its mean”.
- **Proof idea:** use binomial coefficients and Stirling’s formula.
- Question: Does similar statement hold if X_i are i.i.d. from some other law?
Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^{n} X_i$.

Suppose each X_i is 1 with probability p and 0 with probability $q = 1 - p$.

DeMoivre-Laplace limit theorem:

$$\lim_{n \to \infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

Here $\Phi(b) - \Phi(a) = P\{a \leq Z \leq b\}$ when Z is a standard normal random variable.

$\frac{S_n - np}{\sqrt{npq}}$ describes “number of standard deviations that S_n is above or below its mean”.

Proof idea: use binomial coefficients and Stirling’s formula.

Question: Does similar statement hold if X_i are i.i.d. from some other law?

Central limit theorem: Yes, if they have finite variance.
Local $p = 1/2$ DeMoivre-Laplace limit theorem

- **Stirling:** $n! \sim n^n e^{-n} \sqrt{2\pi n}$ where \sim means ratio tends to one.
Local $p = 1/2$ DeMoivre-Laplace limit theorem

- **Stirling:** $n! \sim n^n e^{-n} \sqrt{2\pi n}$ where \sim means ratio tends to one.
- **Theorem:** If $2k/\sqrt{2n} \to x$ then

 $P(S_{2n} = 2k) \sim (\pi n)^{-1/2} e^{-x^2/2}$.

Local $p = 1/2$ DeMoivre-Laplace limit theorem

- **Stirling:** $n! \sim n^n e^{-n} \sqrt{2\pi n}$ where \sim means ratio tends to one.
- **Theorem:** If $2k/\sqrt{2n} \rightarrow x$ then

 $P(S_{2n} = 2k) \sim (\pi n)^{-1/2} e^{-x^2/2}$.

- Recall

 $P(S_{2n} = 2k) = \binom{2n}{n+k} 2^{-2n} = 2^{-2n} \frac{(2n)!}{(n+k)!(n-k)!}$.
Outline

Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions
Outline

Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions
Weak convergence

Let X be random variable, X_n a sequence of random variables.

Example:

If X_n is equal to $1/n$ a.s. then X_n converge weakly to an X equal to 0 a.s. Note that $\lim_{n \to \infty} F_n(0) \neq F(0)$ in this case.

Example:

If X_i are i.i.d. then the empirical distributions converge a.s. to law of X_1 (Glivenko-Cantelli).

Example:

Let X_n be the nth largest of $2n + 1$ points chosen i.i.d. from fixed law.
Let X be a random variable, X_n a sequence of random variables.

Say X_n converge in distribution or converge in law to X if
\[
\lim_{n \to \infty} F_{X_n}(x) = F_X(x)
\]
at all $x \in \mathbb{R}$ at which F_X is continuous.
Weak convergence

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if $\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$ at all $x \in \mathbb{R}$ at which F_X is continuous.
- Also say that the $F_n = F_{X_n}$ converge weakly to $F = F_X$.

Example: X_i chosen from $\{-1, 1\}$ with i.i.d. fair coin tosses: then $n^{-1/2} \sum_{i=1}^n X_i$ converges in law to a normal random variable (mean zero, variance one) by DeMoivre-Laplace.

Example: If X_n is equal to $1/n$ a.s. then X_n converge weakly to an X equal to 0 a.s. Note that $\lim_{n \to \infty} F_n(0) \neq F(0)$ in this case.

Example: If X_i are i.i.d. then the empirical distributions converge a.s. to law of X_1 (Glivenko-Cantelli).

Example: Let X_n be the nth largest of $2^n + 1$ points chosen i.i.d. from fixed law.
Weak convergence

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if
 \[\lim_{n \to \infty} F_{X_n}(x) = F_X(x) \]
 at all $x \in \mathbb{R}$ at which F_X is continuous.
- Also say that the $F_n = F_{X_n}$ converge weakly to $F = F_X$.
- **Example:** X_i chosen from $\{-1, 1\}$ with i.i.d. fair coin tosses:
 then $n^{-1/2} \sum_{i=1}^{n} X_i$ converges in law to a normal random variable (mean zero, variance one) by DeMoivre-Laplace.
Weak convergence

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if $\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$ at all $x \in \mathbb{R}$ at which F_X is continuous.
- Also say that the $F_n = F_{X_n}$ converge weakly to $F = F_X$.
- **Example:** X_i chosen from $\{-1, 1\}$ with i.i.d. fair coin tosses: then $n^{-1/2} \sum_{i=1}^{n} X_i$ converges in law to a normal random variable (mean zero, variance one) by DeMoivre-Laplace.
- **Example:** If X_n is equal to $1/n$ a.s. then X_n converge weakly to an X equal to 0 a.s. Note that $\lim_{n \to \infty} F_n(0) \neq F(0)$ in this case.
Weak convergence

- Let X be random variable, X_n a sequence of random variables.

- Say X_n converge in distribution or converge in law to X if
 \[\lim_{n \to \infty} F_{X_n}(x) = F_X(x)\]
 at all $x \in \mathbb{R}$ at which F_X is continuous.

- Also say that the $F_n = F_{X_n}$ converge weakly to $F = F_X$.

- **Example:** X_i chosen from $\{-1, 1\}$ with i.i.d. fair coin tosses: then $n^{-1/2} \sum_{i=1}^{n} X_i$ converges in law to a normal random variable (mean zero, variance one) by DeMoivre-Laplace.

- **Example:** If X_n is equal to $1/n$ a.s. then X_n converge weakly to an X equal to 0 a.s. Note that $\lim_{n \to \infty} F_n(0) \neq F(0)$ in this case.

- **Example:** If X_i are i.i.d. then the empirical distributions converge a.s. to law of X_1 (Glivenko-Cantelli).
Let X be random variable, X_n a sequence of random variables.

Say X_n converge in distribution or converge in law to X if
\[\lim_{n \to \infty} F_{X_n}(x) = F_X(x) \]
at all $x \in \mathbb{R}$ at which F_X is continuous.

Also say that the $F_n = F_{X_n}$ converge weakly to $F = F_X$.

Example: X_i chosen from $\{-1, 1\}$ with i.i.d. fair coin tosses: then $n^{-1/2} \sum_{i=1}^{n} X_i$ converges in law to a normal random variable (mean zero, variance one) by DeMoivre-Laplace.

Example: If X_n is equal to $1/n$ a.s. then X_n converge weakly to an X equal to 0 a.s. Note that $\lim_{n \to \infty} F_n(0) \neq F(0)$ in this case.

Example: If X_i are i.i.d. then the empirical distributions converge a.s. to law of X_1 (Glivenko-Cantelli).

Example: Let X_n be the nth largest of $2n + 1$ points chosen i.i.d. from fixed law.
Theorem: If $F_n \to F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n \to Y_\infty$ almost surely.
Theorem: If $F_n \to F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n \to Y_\infty$ almost surely.

Proof idea: Take $\Omega = (0, 1)$ and $Y_n = \sup\{y : F_n(y) < x\}$.
Convergence results

- **Theorem:** If $F_n \to F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n \to Y_\infty$ almost surely.

- **Proof idea:** Take $\Omega = (0, 1)$ and $Y_n = \sup\{y : F_n(y) < x\}$.

- **Theorem:** $X_n \Rightarrow X_\infty$ if and only if for every bounded continuous g we have $Eg(X_n) \to Eg(X_\infty)$.

- **Proof idea:** Define X_n on common sample space so converge a.s., use bounded convergence theorem.
Convergence results

- **Theorem:** If $F_n \to F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n \to Y_\infty$ almost surely.

- **Proof idea:** Take $\Omega = (0, 1)$ and $Y_n = \sup\{y : F_n(y) < x\}$.

- **Theorem:** $X_n \Rightarrow X_\infty$ if and only if for every bounded continuous g we have $Eg(X_n) \to Eg(X_\infty)$.

- **Proof idea:** Define X_n on common sample space so converge a.s., use bounded convergence theorem.
Theorem: If \(F_n \to F_\infty \), then we can find corresponding random variables \(Y_n \) on a common measure space so that \(Y_n \to Y_\infty \) almost surely.

Proof idea: Take \(\Omega = (0, 1) \) and \(Y_n = \sup\{y : F_n(y) < x\} \).

Theorem: \(X_n \implies X_\infty \) if and only if for every bounded continuous \(g \) we have \(E g(X_n) \to E g(X_\infty) \).

Proof idea: Define \(X_n \) on common sample space so converge a.s., use bounded convergence theorem.

Theorem: Suppose \(g \) is measurable and its set of discontinuity points has \(\mu_X \) measure zero. Then \(X_n \implies X_\infty \) implies \(g(X_n) \implies g(X) \).
Convergence results

- **Theorem**: If $F_n \rightarrow F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n \rightarrow Y_\infty$ almost surely.

- **Proof idea**: Take $\Omega = (0, 1)$ and $Y_n = \sup\{y : F_n(y) < x\}$.

- **Theorem**: $X_n \Rightarrow X_\infty$ if and only if for every bounded continuous g we have $Eg(X_n) \rightarrow Eg(X_\infty)$.

- **Proof idea**: Define X_n on common sample space so converge a.s., use bounded convergence theorem.

- **Theorem**: Suppose g is measurable and its set of discontinuity points has μ_X measure zero. Then $X_n \Rightarrow X_\infty$ implies $g(X_n) \Rightarrow g(X)$.

- **Proof idea**: Define X_n on common sample space so converge a.s., use bounded convergence theorem.
Theorem: Every sequence F_n of distribution has subsequence converging to right continuous nondecreasing F so that $\lim F_{n(k)}(y) = F(y)$ at all continuity points of F. Limit may not be a distribution function. Need a “tightness” assumption to make that the case. Say μ_n are tight if for every ϵ we can find an M so that $\mu_n[-M,M] < \epsilon$ for all n. Define tightness analogously for corresponding real random variables or distribution functions. Theorem: Every subsequential limit of the F_n above is the distribution function of a probability measure if and only if the F_n are tight.
Compactness

- **Theorem:** Every sequence F_n of distribution has subsequence converging to right continuous nondecreasing F so that $\lim F_{n(k)}(y) = F(y)$ at all continuity points of F.

- Limit may not be a distribution function.
Compactness

- **Theorem:** Every sequence F_n of distribution has subsequence converging to right continuous nondecreasing F so that $\lim F_{n(k)}(y) = F(y)$ at all continuity points of F.

- Limit may not be a distribution function.

- Need a “tightness” assumption to make that the case. Say μ_n are tight if for every ϵ we can find an M so that $\mu_n[-M, M] < \epsilon$ for all n. Define tightness analogously for corresponding real random variables or distributions functions.
Theorem: Every sequence \(F_n \) of distribution has subsequence converging to right continuous nondecreasing \(F \) so that
\[
\lim F_{n(k)}(y) = F(y) \text{ at all continuity points of } F.
\]
Limit may not be a distribution function.
Need a “tightness” assumption to make that the case. Say \(\mu_n \) are tight if for every \(\epsilon \) we can find an \(M \) so that
\[
\mu_n[-M, M] < \epsilon \text{ for all } n.
\]
Define tightness analogously for corresponding real random variables or distributions functions.

Theorem: Every subsequential limit of the \(F_n \) above is the distribution function of a probability measure if and only if the \(F_n \) are tight.
If we have two probability measures μ and ν we define the **total variation distance** between them is
\[\|\mu - \nu\| := \sup_B \left| \mu(B) - \nu(B) \right|. \]
If we have two probability measures μ and ν we define the **total variation distance** between them is

$$||\mu - \nu|| := \sup_B |\mu(B) - \nu(B)|.$$

Intuitively, if two measures are close in the total variation sense, then (most of the time) a sample from one measure looks like a sample from the other.
If we have two probability measures μ and ν we define the **total variation distance** between them is

$$||\mu - \nu|| := \sup_B |\mu(B) - \nu(B)|.$$

Intuitively, if two measures are close in the total variation sense, then (most of the time) a sample from one measure looks like a sample from the other.

Convergence in total variation norm is much stronger than weak convergence.
Outline

Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions
Outline

Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions
Let X be a random variable.
Let X be a random variable.

The **characteristic function** of X is defined by
$$
\phi(t) = \phi_X(t) := E[e^{itX}].
$$
Like $M(t)$ except with i thrown in.

Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.

Characteristic functions are similar to moment generating functions in some ways.

For example, $\phi_X + Y = \phi_X \phi_Y$, just as $M_X + Y = M_X M_Y$, if X and Y are independent.

And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.

And if X has an mth moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.

But characteristic functions have an advantage: they are well defined at all t for all random variables X.

18.175 Lecture 8
Let X be a random variable.

The **characteristic function** of X is defined by

$$\phi(t) = \phi_X(t) := E[e^{itX}].$$

Like $M(t)$ except with i thrown in.

Recall that by definition $e^{it} = \cos(t) + i \sin(t)$.
Let X be a random variable.

The **characteristic function** of X is defined by

$$
\phi(t) = \phi_X(t) := E[e^{itX}].
$$

Like $M(t)$ except with i thrown in.

Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.

Characteristic functions are similar to moment generating functions in some ways.
Let X be a random variable.

The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like $M(t)$ except with i thrown in.

Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.

Characteristic functions are similar to moment generating functions in some ways.

For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.
Characteristic functions

- Let X be a random variable.
- The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like $M(t)$ except with i thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
Let X be a random variable.

The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like $M(t)$ except with i thrown in.

Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.

Characteristic functions are similar to moment generating functions in some ways.

For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.

And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.

And if X has an mth moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.
Let X be a random variable.

The **characteristic function** of X is defined by

$$\phi(t) = \phi_X(t) := E[e^{itX}].$$

Like $M(t)$ except with i thrown in.

Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.

Characteristic functions are similar to moment generating functions in some ways.

For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.

And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.

And if X has an mth moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.

But characteristic functions have an advantage: they are well defined at all t for all random variables X.
Lévy’s continuity theorem: if

\[\lim_{n \to \infty} \phi_{X_n}(t) = \phi_X(t) \]

for all \(t \), then \(X_n \) converge in law to \(X \).
Lévy’s continuity theorem: if
\[
\lim_{n \to \infty} \phi_{X_n}(t) = \phi_X(t)
\]
for all \(t\), then \(X_n\) converge in law to \(X\).

By this theorem, we can prove the weak law of large numbers by showing \(\lim_{n \to \infty} \phi_{A_n}(t) = \phi_{\mu}(t) = e^{it\mu}\) for all \(t\). In the special case that \(\mu = 0\), this amounts to showing \(\lim_{n \to \infty} \phi_{A_n}(t) = 1\) for all \(t\).
Continuity theorems

- **Lévy’s continuity theorem:** if

\[\lim_{n \to \infty} \phi_{X_n}(t) = \phi_X(t) \]

for all \(t \), then \(X_n \) converge in law to \(X \).

- By this theorem, we can prove the weak law of large numbers by showing \(\lim_{n \to \infty} \phi_{A_n}(t) = \phi_{\mu}(t) = e^{it\mu} \) for all \(t \). In the special case that \(\mu = 0 \), this amounts to showing \(\lim_{n \to \infty} \phi_{A_n}(t) = 1 \) for all \(t \).

- **Moment generating analog:** if moment generating functions \(M_{X_n}(t) \) are defined for all \(t \) and \(n \) and \(\lim_{n \to \infty} M_{X_n}(t) = M_X(t) \) for all \(t \), then \(X_n \) converge in law to \(X \).