18.175: Lecture 7
Zero-one laws and maximal inequalities

Scott Sheffield

MIT
Outline

Borel-Cantelli applications

Strong law of large numbers

Kolmogorov zero-one law and three-series theorem
Outline

Borel-Cantelli applications

Strong law of large numbers

Kolmogorov zero-one law and three-series theorem
First Borel-Cantelli lemma: If $\sum_{n=1}^{\infty} P(A_n) < \infty$ then $P(A_n \text{ i.o.}) = 0$.

Second Borel-Cantelli lemma: If A_n are independent, then $\sum_{n=1}^{\infty} P(A_n) = \infty$ implies $P(A_n \text{ i.o.}) = 1$.

Borel-Cantelli lemmas
First Borel-Cantelli lemma: If $\sum_{n=1}^{\infty} P(A_n) < \infty$ then $P(A_n \text{ i.o.}) = 0$.

Second Borel-Cantelli lemma: If A_n are independent, then $\sum_{n=1}^{\infty} P(A_n) = \infty$ implies $P(A_n \text{ i.o.}) = 1$.
Theorem: $X_n \to X$ in probability if and only if for every subsequence of the X_n there is a further subsequence converging a.s. to X.
Theorem: $X_n \rightarrow X$ in probability if and only if for every subsequence of the X_n there is a further subsequence converging a.s. to X.

Main idea of proof: Consider event E_n that X_n and X differ by ϵ. Do the E_n occur i.o.? Use Borel-Cantelli.
Pairwise independence example

- **Theorem:** Suppose A_1, A_2, \ldots are pairwise independent and $\sum P(A_n) = \infty$, and write $S_n = \sum_{i=1}^{n} 1_{A_i}$. Then the ratio S_n/ES_n tends a.s. to 1.
Theorem: Suppose A_1, A_2, \ldots are pairwise independent and $\sum P(A_n) = \infty$, and write $S_n = \sum_{i=1}^n 1_{A_i}$. Then the ratio S_n/ES_n tends a.s. to 1.

Main idea of proof: First, pairwise independence implies that variances add. Conclude (by checking term by term) that $\text{Var}S_n \leq ES_n$. Then Chebyshev implies
\[
P(|S_n - ES_n| > \delta ES_n) \leq \frac{\text{Var}(S_n)}{(\delta ES_n)^2} \to 0,
\]
which gives us convergence in probability.
Theorem: Suppose A_1, A_2, \ldots are pairwise independent and $\sum P(A_n) = \infty$, and write $S_n = \sum_{i=1}^{n} 1_{A_i}$. Then the ratio S_n/ES_n tends a.s. to 1.

Main idea of proof: First, pairwise independence implies that variances add. Conclude (by checking term by term) that $\text{Var}S_n \leq ES_n$. Then Chebyshev implies

$$P(|S_n - ES_n| > \delta ES_n) \leq \frac{\text{Var}(S_n)}{(\delta ES_n)^2} \to 0,$$

which gives us convergence in probability.

Second, take a smart subsequence. Let $n_k = \inf\{n : ES_n \geq k^2\}$. Use Borel Cantelli to get a.s. convergence along this subsequence. Check that convergence along this subsequence deterministically implies the non-subsequential convergence.
Outline

Borel-Cantelli applications

Strong law of large numbers

Kolmogorov zero-one law and three-series theorem
Outline

Borel-Cantelli applications

Strong law of large numbers

Kolmogorov zero-one law and three-series theorem
Theorem (strong law): If X_1, X_2, \ldots are i.i.d. real-valued random variables with expectation m and $A_n := n^{-1} \sum_{i=1}^{n} X_i$ are the empirical means then $\lim_{n \to \infty} A_n = m$ almost surely.
Proof of strong law assuming $E[X^4] < \infty$

Proof of strong law assuming $E[X^4] < \infty$

- Note: $\text{Var}[X^2] = E[X^4] - E[X^2]^2 \geq 0$, so $E[X^2]^2 \leq K$.

$\sum_{n=1}^{\infty} A_n^4 < \infty$ (and hence $A_n \to 0$) with probability 1.
Proof of strong law assuming \(E[X^4] < \infty \)

- Assume \(K := E[X^4] < \infty \). Not necessary, but simplifies proof.
- Note: \(\text{Var}[X^2] = E[X^4] - E[X^2]^2 \geq 0 \), so \(E[X^2]^2 \leq K \).
- The strong law holds for i.i.d. copies of \(X \) if and only if it holds for i.i.d. copies of \(X - \mu \) where \(\mu \) is a constant.
Proof of strong law assuming $E[X^4] < \infty$

- Note: $\text{Var}[X^2] = E[X^4] - E[X^2]^2 \geq 0$, so $E[X^2]^2 \leq K$.
- The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X - \mu$ where μ is a constant.
- So we may as well assume $E[X] = 0$.

18.175 Lecture 7
Proof of strong law assuming $E[X^4] < \infty$

- Note: $\text{Var}[X^2] = E[X^4] - E[X^2]^2 \geq 0$, so $E[X^2]^2 \leq K$.
- The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X - \mu$ where μ is a constant.
- So we may as well assume $E[X] = 0$.
- Key to proof is to bound fourth moments of A_n.

\[E[A_n^4] = n - 4E[S_n^4] = n - 4E[(X_1 + \cdots + X_n)^4]. \]

Expand $(X_1 + \cdots + X_n)^4$. Five kinds of terms: $X_i X_j X_k X_l$ and $X_i X_j X^2_k$ and $X^3_i X_j$ and $X^2_i X^2_j$ and X^4_i. The first three terms all have expectation zero. There are n^2 of the fourth type and n of the last type, each equal to at most K. So $E[A_n^4] \leq n - 4(n^2/6 + n)K$. Thus $E[\sum_{n=1}^{\infty} A_n^4] = \sum_{n=1}^{\infty} E[A_n^4] < \infty$. So $\sum_{n=1}^{\infty} A_n^4 < \infty$ (and hence $A_n \to 0$) with probability 1.
Proof of strong law assuming $E[X^4] < \infty$

- Note: $\text{Var}[X^2] = E[X^4] - E[X^2]^2 \geq 0$, so $E[X^2]^2 \leq K$.
- The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X - \mu$ where μ is a constant.
- So we may as well assume $E[X] = 0$.
- Key to proof is to bound fourth moments of A_n.

18.175 Lecture 7
Proof of strong law assuming $E[X^4] < \infty$

- Note: $\text{Var}[X^2] = E[X^4] - E[X^2]^2 \geq 0$, so $E[X^2]^2 \leq K$.
- The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X - \mu$ where μ is a constant.
- So we may as well assume $E[X] = 0$.
- Key to proof is to bound fourth moments of A_n.
- Expand $(X_1 + \ldots + X_n)^4$. Five kinds of terms: $X_i X_j X_k X_l$ and $X_i X_j X_k^2$ and $X_i X_j^3$ and $X_i^2 X_j^2$ and X_i^4.
Proof of strong law assuming $E[X^4] < \infty$

- Note: $\text{Var}[X^2] = E[X^4] - E[X^2]^2 \geq 0$, so $E[X^2]^2 \leq K$.
- The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X - \mu$ where μ is a constant.
- So we may as well assume $E[X] = 0$.
- Key to proof is to bound fourth moments of A_n.
- Expand $(X_1 + \ldots + X_n)^4$. Five kinds of terms: $X_i X_j X_k X_l$ and $X_i X_j X_k^2$ and $X_i X_j^3$ and $X_i^2 X_j^2$ and X_i^4.
- The first three terms all have expectation zero. There are $\binom{n}{2}$ of the fourth type and n of the last type, each equal to at most K. So $E[A_n^4] \leq n^{-4} \left(6 \binom{n}{2} + n \right) K$.
Proof of strong law assuming $E[X^4] < \infty$

- Note: $\text{Var}[X^2] = E[X^4] - E[X^2]^2 \geq 0$, so $E[X^2]^2 \leq K$.
- The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X - \mu$ where μ is a constant.
- So we may as well assume $E[X] = 0$.
- Key to proof is to bound fourth moments of A_n.
- Expand $(X_1 + \ldots + X_n)^4$. Five kinds of terms: $X_iX_jX_kX_l$ and $X_iX_jX_k^2$ and $X_iX_j^3$ and $X_i^2X_j^2$ and X_i^4.
- The first three terms all have expectation zero. There are $\binom{n}{2}$ of the fourth type and n of the last type, each equal to at most K. So $E[A_n^4] \leq n^{-4}\left(6\left(\binom{n}{2}\right) + n\right)K$.
- Thus $E[\sum_{n=1}^{\infty} A_n^4] = \sum_{n=1}^{\infty} E[A_n^4] < \infty$. So $\sum_{n=1}^{\infty} A_n^4 < \infty$ (and hence $A_n \to 0$) with probability 1.
Suppose X_k are i.i.d. with finite mean. Let $Y_k = X_k 1_{|X_k| \leq k}$. Write $T_n = Y_1 + \ldots + Y_n$. **Claim:** $X_k = Y_k$ all but finitely often a.s. so suffices to show $T_n/n \to \mu$. (Borel Cantelli, expectation of positive r.v. is area between cdf and line $y = 1$)
General proof of strong law

- Suppose X_k are i.i.d. with finite mean. Let $Y_k = X_k 1_{|X_k| \leq k}$. Write $T_n = Y_1 + \ldots + Y_n$. **Claim:** $X_k = Y_k$ all but finitely often a.s. so suffices to show $T_n/n \to \mu$. (Borel Cantelli, expectation of positive r.v. is area between cdf and line $y = 1$)

- **Claim:** $\sum_{k=1}^{\infty} \text{Var}(Y_k)/k^2 \leq 4E|X_1| < \infty$. How to prove it?
General proof of strong law

- Suppose X_k are i.i.d. with finite mean. Let $Y_k = X_k 1_{|X_k| \leq k}$. Write $T_n = Y_1 + \ldots + Y_n$. **Claim:** $X_k = Y_k$ all but finitely often a.s. so suffices to show $T_n/n \to \mu$. (Borel Cantelli, expectation of positive r.v. is area between cdf and line $y = 1$)

- **Claim:** $\sum_{k=1}^{\infty} \text{Var}(Y_k)/k^2 \leq 4E|X_1| < \infty$. How to prove it?

- **Observe:** $\text{Var}(Y_k) \leq E(Y_k^2) = \int_0^\infty 2yP(|Y_k| > y)dy \leq \int_0^k 2yP(|X_1| > y)dy$. Use Fubini (interchange sum/integral, since everything positive)

\[
\sum_{k=1}^{\infty} E(Y_k^2)/k^2 \leq \sum_{k=1}^{\infty} k^{-2} \int_0^\infty 1_{(y<k)} 2yP(|X_1| > y)dy = \\
\int_0^\infty \left(\sum_{k=1}^{\infty} k^{-2} 1_{(y<k)} \right) 2yP(|X_1| > y)dy.
\]

Since $E|X_1| = \int_0^\infty P(|X_1| > y)dy$, complete proof of claim by showing that if $y \geq 0$ then $2y \sum_{k>y} k^{-2} \leq 4$.

18.175 Lecture 7
Claim: $\sum_{k=1}^{\infty} \text{Var}(Y_k)/k^2 \leq 4E|X_1| < \infty$. How to use it?
General proof of strong law

- **Claim:** \(\sum_{k=1}^{\infty} \frac{\text{Var}(Y_k)}{k^2} \leq 4E|X_1| < \infty \). How to use it?
- Consider subsequence \(k(n) = \lfloor \alpha^n \rfloor \) for arbitrary \(\alpha > 1 \). Using Chebyshev, if \(\epsilon > 0 \) then

\[
\sum_{n=1}^{\infty} P(|T_{k(n)} - ET_{k(n)}| > \epsilon k(n)) \leq \epsilon^{-1} \sum_{n=1}^{\infty} \frac{\text{Var}(T_{k(n)})}{k(n)^2}
\]

\[
= \epsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \text{Var}(Y_m) = \epsilon^{-2} \sum_{m=1}^{\infty} \text{Var}(Y_m) \sum_{n:k(n) \geq m} k(n)^{-2}.
\]
Claim: $\sum_{k=1}^{\infty} \frac{\text{Var}(Y_k)}{k^2} \leq 4E|X_1| < \infty$. How to use it?

Consider subsequence $k(n) = [\alpha^n]$ for arbitrary $\alpha > 1$. Using Chebyshev, if $\epsilon > 0$ then

$$\sum_{n=1}^{\infty} P\left(| T_{k(n)} - ET_{k(n)} | > \epsilon k(n) \right) \leq \epsilon^{-1} \sum_{n=1}^{\infty} \frac{\text{Var}(T_{k(n)})}{k(n)^2}$$

$$= \epsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \text{Var}(Y_m) = \epsilon^{-2} \sum_{m=1}^{\infty} \text{Var}(Y_m) \sum_{n: k(n) \geq m} k(n)^{-2}.$$

Sum series:

$$\sum_{n: \alpha^n \geq m} [\alpha^n]^{-2} \leq 4 \sum_{n: \alpha^n \geq m} \alpha^{-2n} \leq 4(1 - \alpha^{-2})^{-1} m^{-2}.$$
Claim: $\sum_{k=1}^{\infty} \text{Var}(Y_k)/k^2 \leq 4E|X_1| < \infty$. How to use it?

Consider subsequence $k(n) = \lceil \alpha^n \rceil$ for arbitrary $\alpha > 1$. Using Chebyshev, if $\epsilon > 0$ then

$$\sum_{n=1}^{\infty} P\left(|T_{k(n)} - ET_{k(n)}| > \epsilon k(n) \right) \leq \epsilon^{-1} \sum_{n=1}^{\infty} \text{Var}(T_{k(n)})/k(n)^2$$

$$= \epsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \text{Var}(Y_m) = \epsilon^{-2} \sum_{m=1}^{\infty} \text{Var}(Y_m) \sum_{n: k(n) \geq m} k(n)^{-2}.$$

Sum series:

$$\sum_{n: \alpha^n \geq m} [\alpha^n]^{-2} \leq 4 \sum_{n: \alpha^n \geq m} \alpha^{-2n} \leq 4(1 - \alpha^{-2})^{-1} m^{-2}.$$

Combine computations (observe RHS below is finite):

$$\sum_{n=1}^{\infty} P\left(|T_{k(n)} - ET_{k(n)}| > \epsilon k(n) \right) \leq 4(1-\alpha^{-2})^{-1} \epsilon^{-2} \sum_{m=1}^{\infty} E(Y_m^2) m^{-2}.$$
Claim: $\sum_{k=1}^{\infty} \text{Var}(Y_k)/k^2 \leq 4E|X_1| < \infty$. How to use it?

Consider subsequence $k(n) = [\alpha^n]$ for arbitrary $\alpha > 1$. Using Chebyshev, if $\epsilon > 0$ then

$$\sum_{n=1}^{\infty} P\left(|T_{k(n)} - ET_{k(n)}| > \epsilon k(n) \right) \leq \epsilon^{-1} \sum_{n=1}^{\infty} \text{Var}(T_{k(n)})/k(n)^2$$

$$= \epsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \text{Var}(Y_m) = \epsilon^{-2} \sum_{m=1}^{\infty} \text{Var}(Y_m) \sum_{n:k(n)\geq m} k(n)^{-2}.$$

Sum series:
$$\sum_{n:\alpha^n \geq m} [\alpha^n]^{-2} \leq 4 \sum_{n:\alpha^n \geq m} \alpha^{-2n} \leq 4(1 - \alpha^{-2})^{-1} m^{-2}.$$

Combine computations (observe RHS below is finite):
$$\sum_{n=1}^{\infty} P\left(|T_{k(n)} - ET_{k(n)}| > \epsilon k(n) \right) \leq 4(1 - \alpha^{-2})^{-1} \epsilon^{-2} \sum_{m=1}^{\infty} E(Y_m^2)m^{-2}.$$

Since ϵ is arbitrary, get $(T_{k(n)} - ET_{k(n)})/k(n) \to 0$ a.s.
Conclude by taking $\alpha \to 1$. This finishes the case that the X_1 are a.s. positive.
General proof of strong law

- Conclude by taking $\alpha \to 1$. This finishes the case that the X_1 are a.s. positive.
- Can extend to the case that X_1 is a.s. positive with infinite mean.
Conclude by taking $\alpha \to 1$. This finishes the case that the X_1 are a.s. positive.

Can extend to the case that X_1 is a.s. positive with infinite mean.

Generally, can consider X_1^+ and X_1^-, and it is enough if one of them has a finite mean.
Outine

Borel-Cantelli applications

Strong law of large numbers

Kolmogorov zero-one law and three-series theorem
Outline

Borel-Cantelli applications

Strong law of large numbers

Kolmogorov zero-one law and three-series theorem
Kolmogorov zero-one law

Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}_n' = \sigma(X_n, X_{n_1}, \ldots)$ and $\mathcal{T} = \cap_n \mathcal{F}_n'$.

\mathcal{T} is called the tail σ-algebra. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn’t change when finitely many X_n are changed.

Event that X_n converge to a limit is example of a tail event. Other examples?

Theorem: If X_1, X_2, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}$.
Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}_n' = \sigma(X_n, X_{n_1}, \ldots)$ and $\mathcal{T} = \bigcap_n \mathcal{F}_n'$.

\mathcal{T} is called the **tail σ-algebra**. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn’t change when finitely many X_n are changed.
Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}_n' = \sigma(X_n, X_{n_1}, \ldots)$ and $\mathcal{T} = \cap_n \mathcal{F}_n'$.

\mathcal{T} is called the **tail σ-algebra**. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn’t change when finitely many X_n are changed.

Event that X_n converge to a limit is example of a tail event. Other examples?
Consider sequence of random variables X_n on some probability space. Write $F'_n = \sigma(X_n, X_{n1}, \ldots)$ and $T = \cap_n F'_n$.

T is called the **tail σ-algebra**. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn’t change when finitely many X_n are changed.

Event that X_n converge to a limit is example of a tail event. Other examples?

Theorem: If X_1, X_2, \ldots are independent and $A \in T$ then $P(A) \in \{0, 1\}$.
Theorem: If X_1, X_2, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}$.

Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., $P(A) = P(A \cap A) = P(A)^2$. How do we prove that?

Recall theorem that if A_i are independent π-systems, then $\sigma(A_i)$ are independent.

Deduce that $\sigma(X_1, X_2, \ldots, X_n)$ and $\sigma(X_n+1, X_n+2, \ldots)$ are independent. Then deduce that $\sigma(X_1, X_2, \ldots)$ and \mathcal{T} are independent, using fact that $\bigcup_k \sigma(X_1, \ldots, X_k)$ and \mathcal{T} are π-systems.
Theorem: If X_1, X_2, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}$.

Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., $P(A) = P(A \cap A) = P(A)^2$. How do we prove that?
Theorem: If X_1, X_2, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}$.

Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., $P(A) = P(A \cap A) = P(A)^2$. How do we prove that?

Recall theorem that if \mathcal{A}_i are independent π-systems, then $\sigma \mathcal{A}_i$ are independent.
Kolmogorov zero-one law proof idea

Theorem: If \(X_1, X_2, \ldots \) are independent and \(A \in \mathcal{T} \) then \(P(A) \in \{0, 1\} \).

Main idea of proof: Statement is equivalent to saying that \(A \) is independent of itself, i.e., \(P(A) = P(A \cap A) = P(A)^2 \). How do we prove that?

Recall theorem that if \(A_i \) are independent \(\pi \)-systems, then \(\sigma A_i \) are independent.

Deduce that \(\sigma(X_1, X_2, \ldots, X_n) \) and \(\sigma(X_{n+1}, X_{n+1}, \ldots) \) are independent. Then deduce that \(\sigma(X_1, X_2, \ldots) \) and \(\mathcal{T} \) are independent, using fact that \(\cup_k \sigma(X_1, \ldots, X_k) \) and \(\mathcal{T} \) are \(\pi \)-systems.
Theorem: Suppose X_i are independent with mean zero and finite variances, and $S_n = \sum_{i=1}^{n} X_n$. Then

$$P\left(\max_{1 \leq k \leq n} |S_k| \geq x \right) \leq x^{-2} \text{Var}(S_n) = x^{-2} E|S_n|^2.$$
Theorem: Suppose X_i are independent with mean zero and finite variances, and $S_n = \sum_{i=1}^{n} X_i$. Then

$$P\left(\max_{1 \leq k \leq n} |S_k| \geq x\right) \leq x^{-2}\text{Var}(S_n) = x^{-2}E|S_n|^2.$$

Main idea of proof: Consider first time maximum is exceeded. Bound below the expected square sum on that event.
Theorem: Let X_1, X_2, \ldots be independent and fix $A > 0$. Write $Y_i = X_i1(|X_i| \leq A)$. Then $\sum X_i$ converges a.s. if and only if the following are all true:
Theorem: Let X_1, X_2, \ldots be independent and fix $A > 0$. Write $Y_i = X_i 1(\{|X_i| \leq A\})$. Then $\sum X_i$ converges a.s. if and only if the following are all true:

- $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$
Theorem: Let X_1, X_2, \ldots be independent and fix $A > 0$. Write $Y_i = X_i 1(|X_i| \leq A)$. Then $\sum X_i$ converges a.s. if and only if the following are all true:

1. $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$
2. $\sum_{n=1}^{\infty} EY_n$ converges
Theorem: Let X_1, X_2, \ldots be independent and fix $A > 0$. Write $Y_i = X_i 1(|X_i| \leq A)$. Then $\sum X_i$ converges a.s. if and only if the following are all true:

- $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$
- $\sum_{n=1}^{\infty} EY_n$ converges
- $\sum_{n=1}^{\infty} \text{Var}(Y_n) < \infty$
Theorem: Let X_1, X_2, \ldots be independent and fix $A > 0$. Write $Y_i = X_i 1(|X_i| \leq A)$. Then $\sum X_i$ converges a.s. if and only if the following are all true:

1. $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$
2. $\sum_{n=1}^{\infty} EY_n$ converges
3. $\sum_{n=1}^{\infty} \text{Var}(Y_n) < \infty$

Main ideas behind the proof: Kolmogorov zero-one law implies that $\sum X_i$ converges with probability $p \in \{0, 1\}$. We just have to show that $p = 1$ when all hypotheses are satisfied (sufficiency of conditions) and $p = 0$ if any one of them fails (necessity).
Kolmogorov three-series theorem

Theorem: Let X_1, X_2, \ldots be independent and fix $A > 0$. Write $Y_i = X_i 1(|X_i| \leq A)$. Then $\sum X_i$ converges a.s. if and only if the following are all true:

- $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$
- $\sum_{n=1}^{\infty} EY_n$ converges
- $\sum_{n=1}^{\infty} \text{Var}(Y_n) < \infty$

Main ideas behind the proof: Kolmogorov zero-one law implies that $\sum X_i$ converges with probability $p \in \{0, 1\}$. We just have to show that $p = 1$ when all hypotheses are satisfied (sufficiency of conditions) and $p = 0$ if any one of them fails (necessity).

To prove sufficiency, apply Borel-Cantelli to see that probability that $X_n \neq Y_n$ i.o. is zero. Subtract means from Y_n, reduce to case that each Y_n has mean zero. Apply Kolmogorov maximal inequality.