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Random variables

Recall definitions

» Probability space is triple (22, F, P) where Q is sample
space, F is set of events (the o-algebra) and P : F — [0,1] is
the probability function.
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Random variables

Recall definitions

» Probability space is triple (22, F, P) where Q is sample
space, F is set of events (the o-algebra) and P : F — [0,1] is
the probability function.

» o-algebra is collection of subsets closed under
complementation and countable unions. Call (Q2,F) a
measure space.

» Measure is function p : F — R satisfying p(A) > u(0) =0
for all A € F and countable additivity: p(U;A;) = > ; u(A;)
for disjoint A;.

» Measure p is probability measure if (Q) = 1.

» The Borel o-algebra B on a topological space is the smallest
o-algebra containing all open sets.
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Random variables

Defining random variables

» Random variable is a measurable function from (Q, F) to
(R, B). That is, a function X : Q — R such that the preimage
of every set in B is in F. Say X is F-measurable.
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Defining random variables

» Random variable is a measurable function from (Q, F) to
(R, B). That is, a function X : Q — R such that the preimage
of every set in B is in F. Say X is F-measurable.

» Question: to prove X is measurable, is it enough to show that
the pre-image of every open set is in F7
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Random variables

Defining random variables

» Random variable is a measurable function from (Q, F) to
(R, B). That is, a function X : Q — R such that the preimage
of every set in B is in F. Say X is F-measurable.

» Question: to prove X is measurable, is it enough to show that
the pre-image of every open set is in F7

» Theorem: If X"1(A) € F for all A€ A and A generates S,
then X is a measurable map from (2, F) to (S, S).

» Can talk about o-algebra generated by random variable(s):
smallest o-algebra that makes a random variable (or a
collection of random variables) measurable.

» Example of random variable: indicator function of a set. Or
sum of finitely many indicator functions of sets.

» Let F(x) = Fx(x) = P(X < x) be distribution function for
X. Write f = fx = Fy for density function of X.
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Examples of possible random variable laws

» What functions can be distributions of random variables?
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Examples of possible random variable laws

» What functions can be distributions of random variables?

» Non-decreasing, right-continuous, with limy_,o, F(x) =1 and
limy—_co F(x) =0.

» Other examples of distribution functions: uniform on [0, 1],
exponential with rate A, standard normal, Cantor set measure.

» Can also define distribution functions for random variables
that are a.s. integers (like Poisson or geometric or binomial
random variables, say). How about for a ratio of two
independent Poisson random variables? (This is a random
rational with a dense support on [0, c0).)
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Random variables

Examples of possible random variable laws

» What functions can be distributions of random variables?

» Non-decreasing, right-continuous, with limy_,o, F(x) =1 and
limy—_co F(x) =0.

» Other examples of distribution functions: uniform on [0, 1],
exponential with rate A, standard normal, Cantor set measure.

» Can also define distribution functions for random variables
that are a.s. integers (like Poisson or geometric or binomial
random variables, say). How about for a ratio of two
independent Poisson random variables? (This is a random
rational with a dense support on [0, c0).)

» Higher dimensional density functions analogously defined.
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Random variables

Other properties

» Compositions of measurable maps between measure spaces
are measurable.
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Random variables

Other properties

» Compositions of measurable maps between measure spaces
are measurable.

» If Xq,..., X, are random variables in R, defined on the same
measure space, then (Xi,...,X,) is a random variable in R".

» Sums and products of finitely many random variables are
random variables. If X; is countable sequence of random
variables, then inf, X,, is a random variable. Same for lim inf,
sup, limsup.

» Given infinite sequence of random variables, consider the event
that they converge to a limit. Is this a measurable event?

> Yes. If it has measure one, we say sequence converges almost
surely.

18 175 l ecture 3



Integration

Outline

Random variables

Integration

Expectation

18 175 |l ecture 3



Integration

Outline

Integration

18 175 |l ecture 3



Integration

Lebesgue integration

> Lebesgue: If you can measure, you can integrate.
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Lebesgue integration

> Lebesgue: If you can measure, you can integrate.

» In more words: if (€2, F) is a measure space with a measure p
with () < oo and f : Q — R is F-measurable, then we can
define [ fdp (for non-negative f, also if both f vV 0 and —f A 0O
and have finite integrals...)
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> Lebesgue: If you can measure, you can integrate.
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cases:
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Lebesgue integration

> Lebesgue: If you can measure, you can integrate.

» In more words: if (€2, F) is a measure space with a measure p
with () < oo and f : Q — R is F-measurable, then we can
define [ fdp (for non-negative f, also if both f vV 0 and —f A 0O
and have finite integrals...)
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non-negative functions have non-negative integrals) in 4
cases:

> f takes only finitely many values.
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or up to nearest multiple of € for e — 0).
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Lebesgue integration

> Lebesgue: If you can measure, you can integrate.

» In more words: if (€2, F) is a measure space with a measure p
with () < oo and f : Q — R is F-measurable, then we can
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Integration

Lebesgue integration

> Lebesgue: If you can measure, you can integrate.

» In more words: if (€2, F) is a measure space with a measure p
with () < oo and f : Q — R is F-measurable, then we can
define [ fdp (for non-negative f, also if both f vV 0 and —f A 0O
and have finite integrals...)

> Idea: define integral, verify linearity and positivity (a.e.
non-negative functions have non-negative integrals) in 4
cases:

> f takes only finitely many values.

» f is bounded (hint: reduce to previous case by rounding down
or up to nearest multiple of € for e — 0).

» f is non-negative (hint: reduce to previous case by taking
f AN for N — o0).

» f is any measurable function (hint: treat positive/negative
parts separately, difference makes sense if both integrals finite).
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Lebesgue integration

» Can we extend previous discussion to case (Q2) = oco?
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Integration

Lebesgue integration

» Can we extend previous discussion to case (Q2) = oco?
» Theorem: if f and g are integrable then:

If f >0 a.s. then [ fdu > 0.

For a,b € R, have [(af + bg)du=a [ fdp+ b [ gdp.
If g < f as. then [gdp < [ fdp.
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Lebesgue integration

» Can we extend previous discussion to case (Q2) = oco?
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Integration

Lebesgue integration

» Can we extend previous discussion to case (Q2) = oco?

» Theorem: if f and g are integrable then:

If f >0 a.s. then [ fdu > 0.

For a,b € R, have [(af + bg)du=a [ fdp+ b [ gdp.

If g < f as. then [gdp < [ fdp.

If g = a.e. then [gdu= [fdpu.

| [ fdu| < [ |fldu.

» When (Q, F, p) = (R, R9, X), write [ f(x)dx = [ 1gfdA.

vV vy vy VvYy
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Expectation

Expectation

» Given probability space (2, F, P) and random variable X, we
write EX = [ XdP. Always defined if X > 0, or if integrals of
max{X,0} and min{X,0} are separately finite.
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Expectation

» Given probability space (2, F, P) and random variable X, we
write EX = [ XdP. Always defined if X > 0, or if integrals of
max{X,0} and min{X,0} are separately finite.

» Since expectation is an integral, we can interpret our basic
properties of integrals (as well as results to come: Jensen's
inequality, Holder's inequality, Fatou's lemma, monotone
convergence, dominated convergence, etc.) as properties of
expectation.
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Expectation

Expectation

» Given probability space (2, F, P) and random variable X, we
write EX = [ XdP. Always defined if X > 0, or if integrals of
max{X,0} and min{X,0} are separately finite.

» Since expectation is an integral, we can interpret our basic
properties of integrals (as well as results to come: Jensen's
inequality, Holder's inequality, Fatou's lemma, monotone
convergence, dominated convergence, etc.) as properties of
expectation.

» EXk is called kth moment of X. Also, if m = EX then
E(X — m)? is called the variance of X.
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Expectation

Properties of expectation /integration

» Jensen’s inequality: If i is probability measure and
¢ : R — R is convex then ¢( [ fdp) < [ ¢(f)dp. If X'is
random variable then E¢(X) > ¢(EX).
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» Jensen’s inequality: If i is probability measure and
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random variable then E¢(X) > ¢(EX).

» Main idea of proof: Approximate ¢ below by linear function
L that agrees with ¢ at EX.
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Expectation

Properties of expectation /integration

» Jensen’s inequality: If i is probability measure and
¢ : R — R is convex then ¢( [ fdp) < [ ¢(f)dp. If X'is
random variable then E¢(X) > ¢(EX).

» Main idea of proof: Approximate ¢ below by linear function
L that agrees with ¢ at EX.

» Applications: Utility, hedge fund payout functions.

» Hélder’s inequality: Write |||, = ([ |f|Pdu)'/? for
1< p< oo f1/p+1/q=1 then [ |fgldu < [If],lgllo

» Main idea of proof: Rescale so that ||f]|,]|g]lq = 1. Use
some basic calculus to check that for any positive x and y we
have xy < xP/p+ y9/p. Write x = |f|, y = |g| and integrate
toget [lfgldn<L+1=1=|F,lgll
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Expectation

Properties of expectation /integration

» Jensen’s inequality: If i is probability measure and
¢ : R — R is convex then ¢( [ fdp) < [ ¢(f)dp. If X'is
random variable then E¢(X) > ¢(EX).

» Main idea of proof: Approximate ¢ below by linear function
L that agrees with ¢ at EX.

» Applications: Utility, hedge fund payout functions.

» Hélder’s inequality: Write |||, = ([ |f|Pdu)'/? for
1< p< oo f1/p+1/q=1 then [ |fgldu < [If],lgllo

» Main idea of proof: Rescale so that ||f]|,]|g]lq = 1. Use
some basic calculus to check that for any positive x and y we
have xy < xP/p+ y9/p. Write x = |f|, y = |g| and integrate
toget [Ifgldn<L+1=1=|F,lgll

» Cauchy-Schwarz inequality: Special case p = g = 2. Gives
[ |fgldu < ||f]l2]lg|l2. Says that dot product of two vectors is

at most product of vector lengths.
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Expectation

Bounded convergence theorem

» Bounded convergence theorem: Consider probability
measure u and suppose |f,| < M a.s. for all n and some fixed
M >0, and that f, — f in probability (i.e.,
limp_oo {x : [fa(x) — f(x)| > €} =0 for all € > 0). Then

/fdﬂ:nll—tgo/f"dﬂ'

(Build counterexample for infinite measure space using wide
and short rectangles?...)
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Expectation

Bounded convergence theorem

» Bounded convergence theorem: Consider probability
measure u and suppose |f,| < M a.s. for all n and some fixed
M >0, and that f, — f in probability (i.e.,
limp_oo {x : [fa(x) — f(x)| > €} =0 for all € > 0). Then

/fdﬂ:nll—tgo/f"dﬂ'

(Build counterexample for infinite measure space using wide
and short rectangles?...)

» Main idea of proof: for any ¢, § can take n large enough so
[fa = fldu < Mé + .
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Expectation

Fatou's lemma

» Fatou’s lemma: If f, > 0 then

Iiminf/fnduz /(Iiminff,,)d,u.

n—oo n—oo

(Counterexample for opposite-direction inequality using thin
and tall rectangles?)
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Expectation

Fatou's lemma

» Fatou’s lemma: If f, > 0 then

Iiminf/fnduz /(Iiminff,,)d,u.
n—oo n—oo

(Counterexample for opposite-direction inequality using thin
and tall rectangles?)

» Main idea of proof: first reduce to case that the f, are
increasing by writing gn(x) = infm>p fim(x) and observing that
gn(x) T g(x) = liminf,_ o fo(x). Then truncate, used
bounded convergence, take limits.
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Expectation

More integral properties

» Monotone convergence: If f, > 0 and f, T f then

/ fodp 1 / fd .
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» Monotone convergence: If f, > 0 and f, T f then

/ fodp 1 / fd .

» Main idea of proof: one direction obvious, Fatou gives other.
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Expectation

More integral properties

» Monotone convergence: If f, > 0 and f, T f then

/ fodp 1 / fd .

» Main idea of proof: one direction obvious, Fatou gives other.

» Dominated convergence: If f, — f a.e. and |f,| < g for all
n and g is integrable, then [ f,du — [ fdp.
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Expectation

More integral properties

>

Monotone convergence: If f, > 0 and f, T f then

/ fodp 1 / fd .

Main idea of proof: one direction obvious, Fatou gives other.

v

v

Dominated convergence: If f, — f a.e. and |f,| < g for all
n and g is integrable, then [ f,du — [ fdp.

v

Main idea of proof: Fatou for functions g + f,, > 0 gives one
side. Fatou for g — f, > 0 gives other.
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Expectation

Computing expectations

» Change of variables. Measure space (2, F, P). Let X be
random variable in (S, S) with distribution . Then if
f(S,S) — (R, R) is measurable we have
Ef(X) = [s f(y)u(dy).
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Expectation

Computing expectations

» Change of variables. Measure space (2, F, P). Let X be
random variable in (S, S) with distribution . Then if
f(S,S) — (R, R) is measurable we have
Ef(X) = [s f(y)u(dy).

» Prove by checking for indicators, simple functions,
non-negative functions, integrable functions.
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Expectation

Computing expectations

» Change of variables. Measure space (2, F, P). Let X be
random variable in (S, S) with distribution . Then if
f(S,S) — (R, R) is measurable we have
Ef(X) = [s f(y)u(dy).

» Prove by checking for indicators, simple functions,
non-negative functions, integrable functions.

» Examples: normal, exponential, Bernoulli, Poisson,
geometric...
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