Outline

Setup

Birkhoff’s ergodic theorem
Outline

Setup

Birkhoff’s ergodic theorem
Motivating problem

- Consider independent bond percolation on \mathbb{Z}^2 with some fixed parameter $p > 1/2$. Look at some simulations.
Motivating problem

- Consider independent bond percolation on \mathbb{Z}^2 with some fixed parameter $p > 1/2$. Look at some simulations.
- Let Ω be the set of maps from the edges of \mathbb{Z}^2 to $\{0, 1\}$, \mathcal{F} the usual product σ-algebra, and $P = P_p$ the probability measure.
Motivating problem

- Consider independent bond percolation on \mathbb{Z}^2 with some fixed parameter $p > 1/2$. Look at some simulations.
- Let Ω be the set of maps from the edges of \mathbb{Z}^2 to $\{0, 1\}$, \mathcal{F} the usual product σ-algebra, and $P = P_p$ the probability measure.
- Now consider an $n \times n$ box centered at 0 and ask: what fraction of the points in that box belong to an infinite clusters? Does this fraction converge to a limit (in some sense: in probability, or maybe almost surely) as $n \to \infty$?
Consider independent bond percolation on \mathbb{Z}^2 with some fixed parameter $p > 1/2$. Look at some simulations.

Let Ω be the set of maps from the edges of \mathbb{Z}^2 to $\{0, 1\}$, \mathcal{F} the usual product σ-algebra, and $P = P_p$ the probability measure.

Now consider an $n \times n$ box centered at 0 and ask: what fraction of the points in that box belong to an infinite clusters? Does this fraction converge to a limit (in some sense: in probability, or maybe almost surely) as $n \to \infty$?

Let $C_x = 1_{x \in \text{infinitecluster}}$. If the C_x were independent of each other, then this would just be a law of large numbers question. But the C_x are not independent of each other — far from it.
Motivating problem

- Consider independent bond percolation on \mathbb{Z}^2 with some fixed parameter $p > 1/2$. Look at some simulations.
- Let Ω be the set of maps from the edges of \mathbb{Z}^2 to $\{0, 1\}$, \mathcal{F} the usual product σ-algebra, and $P = P_p$ the probability measure.
- Now consider an $n \times n$ box centered at 0 and ask: what fraction of the points in that box belong to an infinite clusters? Does this fraction converge to a limit (in some sense: in probability, or maybe almost surely) as $n \to \infty$?
- Let $C_x = 1_{x \in \text{infinite cluster}}$. If the C_x were independent of each other, then this would just be a law of large numbers question. But the C_x are not independent of each other — far from it.
- We don’t have independence. We have translation invariance instead. Is that good enough?
Motivating problem

- Consider independent bond percolation on \mathbb{Z}^2 with some fixed parameter $p > 1/2$. Look at some simulations.
- Let Ω be the set of maps from the edges of \mathbb{Z}^2 to $\{0, 1\}$, \mathcal{F} the usual product σ-algebra, and $P = P_p$ the probability measure.
- Now consider an $n \times n$ box centered at 0 and ask: what fraction of the points in that box belong to an infinite clusters? Does this fraction converge to a limit (in some sense: in probability, or maybe almost surely) as $n \to \infty$?
- Let $C_x = 1_{x \in \text{infinite cluster}}$. If the C_x were independent of each other, then this would just be a law of large numbers question. But the C_x are not independent of each other — far from it.
- We don’t have independence. We have translation invariance instead. Is that good enough?
- More general: C_x distributed in some translation invariant way, $EC_0 < \infty$. Is mean of C_x (on large box) nearly constant?
Let θ_x be the translation of the \mathbb{Z}^2 that moves 0 to x. Each θ_x induces a measure-preserving translation of Ω. Then $C_x(\omega) = C_0(\theta_{-x}(\omega))$. So summing up the C_x values is the same as summing up the $C_0(\theta_x(\omega))$ value over a range of x.
Let θ_x be the translation of the \mathbb{Z}^2 that moves 0 to x. Each θ_x induces a measure-preserving translation of Ω. Then $C_x(\omega) = C_0(\theta_{-x}(\omega))$. So summing up the C_x values is the same as summing up the $C_0(\theta_x(\omega))$ value over a range of x.

The group of translations is generated by a one-step vertical and a one-step horizontal translation. Refer to the corresponding (commuting, P-preserving) maps on Ω as ϕ_1 and ϕ_2.

Let θ_x be the translation of the \mathbb{Z}^2 that moves 0 to x. Each θ_x induces a measure-preserving translation of Ω. Then $C_x(\omega) = C_0(\theta_{-x}(\omega))$. So summing up the C_x values is the same as summing up the $C_0(\theta_x(\omega))$ value over a range of x.

The group of translations is generated by a one-step vertical and a one-step horizontal translation. Refer to the corresponding (commuting, P-preserving) maps on Ω as ϕ_1 and ϕ_2.

We’re interested in averaging $C_0(\phi_1^j \phi_2^k \omega)$ over a range of (j, k) pairs.
Let θ_x be the translation of the \mathbb{Z}^2 that moves 0 to x. Each θ_x induces a measure-preserving translation of Ω. Then $C_x(\omega) = C_0(\theta_{-x}(\omega))$. So summing up the C_x values is the same as summing up the $C_0(\theta_x(\omega))$ value over a range of x.

The group of translations is generated by a one-step vertical and a one-step horizontal translation. Refer to the corresponding (commuting, P-preserving) maps on Ω as ϕ_1 and ϕ_2.

We’re interested in averaging $C_0(\phi_1^j \phi_2^k \omega)$ over a range of (j, k) pairs.

Let’s simplify matters still further and consider the one-dimensional problem. In this case, we have a random variable X and we study empirical averages of the form

$$N^{-1} \sum_{n=1}^{N} X(\phi^n \omega).$$
Examples: stationary X_j sequences

- Could take X_j i.i.d.
Examples: stationary X_j sequences

- Could take X_j i.i.d.
- Or X_n could be a Markov chain, with each individual X_j distributed according to a stationary distribution π.
Examples: stationary X_j sequences

- Could take X_j i.i.d.
- Or X_n could be a Markov chain, with each individual X_j distributed according to a stationary distribution π.
- Rotations of the circle. Say X_0 is uniform in $[0, 1]$ and generally $X_j = X_0 + \alpha j$ modulo 1.
Examples: stationary X_j sequences

- Could take X_j i.i.d.
- Or X_n could be a Markov chain, with each individual X_j distributed according to a stationary distribution π.
- Rotations of the circle. Say X_0 is uniform in $[0, 1]$ and generally $X_j = X_0 + \alpha j$ modulo 1.
- If X_0, X_1, \ldots is stationary and $g : \mathbb{R}\{0,1,\ldots\} \to \mathbb{R}$ is measurable, then $Y_k = g(X_k, X_{k+1}, \ldots)$ is stationary.
Examples: stationary X_j sequences

- Could take X_j i.i.d.
- Or X_n could be a Markov chain, with each individual X_j distributed according to a stationary distribution π.
- Rotations of the circle. Say X_0 is uniform in $[0, 1]$ and generally $X_j = X_0 + \alpha j$ modulo 1.
- If X_0, X_1, \ldots is stationary and $g : \mathbb{R}^{\{0,1,\ldots\}} \to \mathbb{R}$ is measurable, then $Y_k = g(X_k, X_{k+1}, \ldots)$ is stationary.
- Bernoulli shift. X_0, X_1, \ldots are i.i.d. and $Y_k = \sum_{j=1}^{\infty} X_{k+j}2^{-j}$.
Examples: stationary X_j sequences

- Could take X_j i.i.d.
- Or X_n could be a Markov chain, with each individual X_j distributed according to a stationary distribution π.
- Rotations of the circle. Say X_0 is uniform in $[0, 1]$ and generally $X_j = X_0 + \alpha j$ modulo 1.
- If X_0, X_1, \ldots is stationary and $g : \mathbb{R}^{\{0,1,\ldots\}} \to \mathbb{R}$ is measurable, then $Y_k = g(X_k, X_{k+1}, \ldots)$ is stationary.
- Bernoulli shift. X_0, X_1, \ldots are i.i.d. and $Y_k = \sum_{j=1}^{\infty} X_{k+j}2^{-j}$.
- Can construct two-sided (\mathbb{Z}-indexed) stationary sequence from one-sided stationary sequence by Kolmogorov extension.
Examples: stationary X_j sequences

- Could take X_j i.i.d.
- Or X_n could be a Markov chain, with each individual X_j distributed according to a stationary distribution π.
- Rotations of the circle. Say X_0 is uniform in $[0, 1]$ and generally $X_j = X_0 + \alpha j$ modulo 1.
- If X_0, X_1, \ldots is stationary and $g : \mathbb{R}^{\{0,1,\ldots\}} \to \mathbb{R}$ is measurable, then $Y_k = g(X_k, X_{k+1}, \ldots)$ is stationary.
- Bernoulli shift. X_0, X_1, \ldots are i.i.d. and $Y_k = \sum_{j=1}^{\infty} X_{k+j} 2^{-j}$.
- Can construct two-sided (\mathbb{Z}-indexed) stationary sequence from one-sided stationary sequence by Kolmogorov extension.
- What if X_i are i.i.d. tosses of a p-coin, where p is itself random?
Say that A is **invariant** if the symmetric difference between $\phi(A)$ and A has measure zero.

Observe: class I of invariant events is a σ-field.

Measure preserving transformation is called **ergodic** if I is trivial, i.e., every set $A \in I$ satisfies $P(A) \in \{0, 1\}$.

Example: If $\Omega = \mathbb{R} \{0, 1, 2, ... \}$ and A is invariant, then A is necessarily in tail σ-field T, hence has probability zero or one by Kolmogorov's 0−1 law. So sequence is ergodic (the shift on sequence space $\mathbb{R} \{0, 1, 2, ... \}$ is ergodic.).
Definitions

- Say that A is **invariant** if the symmetric difference between $\phi(A)$ and A has measure zero.

- Observe: class \mathcal{I} of invariant events is a σ-field.
Definitions

- Say that \(A \) is **invariant** if the symmetric difference between \(\phi(A) \) and \(A \) has measure zero.
- Observe: class \(\mathcal{I} \) of invariant events is a \(\sigma \)-field.
- Measure preserving transformation is called **ergodic** if \(\mathcal{I} \) is trivial, i.e., every set \(A \in \mathcal{I} \) satisfies \(P(A) \in \{0, 1\} \).
Definitions

- Say that \(A \) is **invariant** if the symmetric difference between \(\phi(A) \) and \(A \) has measure zero.
- Observe: class \(\mathcal{I} \) of invariant events is a \(\sigma \)-field.
- Measure preserving transformation is called **ergodic** if \(\mathcal{I} \) is trivial, i.e., every set \(A \in \mathcal{I} \) satisfies \(P(A) \in \{0, 1\} \).
- **Example:** If \(\Omega = \mathbb{R}^{\{0,1,\ldots\}} \) and \(A \) is invariant, then \(A \) is necessarily in tail \(\sigma \)-field \(\mathcal{T} \), hence has probability zero or one by Kolmogorov’s 0 – 1 law. So sequence is ergodic (the shift on sequence space \(\mathbb{R}^{\{0,1,2,\ldots\}} \) is ergodic).
Outline

Setup

Birkhoff’s ergodic theorem
Outline

Setup

Birkhoff’s ergodic theorem
Let ϕ be a measure preserving transformation of (Ω, F, P). Then for any $X \in L^1$ we have

$$
\frac{1}{n} \sum_{m=0}^{n-1} X(\phi^m \omega) \to E(X|\mathcal{I})
$$

a.s. and in L^1.

Note: if sequence is ergodic, then $E(X|\mathcal{I}) = E(X)$, so the limit is just the mean.
Let ϕ be a measure preserving transformation of (Ω, \mathcal{F}, P). Then for any $X \in L^1$ we have
\[
\frac{1}{n} \sum_{m=0}^{n-1} X(\phi^m \omega) \to E(X|\mathcal{I})
\]
a.s. and in L^1.

Note: if sequence is ergodic, then $E(X|\mathcal{I}) = E(X)$, so the limit is just the mean.
Let ϕ be a measure preserving transformation of (Ω, \mathcal{F}, P). Then for any $X \in L^1$ we have

$$\frac{1}{n} \sum_{m=0}^{n-1} X(\phi^m \omega) \to E(X|\mathcal{I})$$

a.s. and in L^1.

Note: if sequence is ergodic, then $E(X|\mathcal{I}) = E(X)$, so the limit is just the mean.

Proof takes a couple of pages. Shall we work through it?