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Recall: conditional expectation

I Say we’re given a probability space (Ω,F0,P) and a σ-field
F ⊂ F0 and a random variable X measurable w.r.t. F0, with
E |X | <∞. The conditional expectation of X given F is a
new random variable, which we can denote by Y = E (X |F).

I We require that Y is F measurable and that for all A in F ,
we have

∫
A XdP =

∫
A YdP.

I Any Y satisfying these properties is called a version of
E (X |F).

I Theorem: Up to redefinition on a measure zero set, the
random variable E (X |F) exists and is unique.

I This follows from Radon-Nikodym theorem.

I Theorem: E (X |Fi ) is a martingale if Fi is an increasing
sequence of σ-algebras and E (|X |) <∞.
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Martingales

I Let Fn be increasing sequence of σ-fields (called a filtration).

I A sequence Xn is adapted to Fn if Xn ∈ Fn for all n. If Xn is
an adapted sequence (with E |Xn| <∞) then it is called a
martingale if

E (Xn+1|Fn) = Xn

for all n. It’s a supermartingale (resp., submartingale) if
same thing holds with = replaced by ≤ (resp., ≥).
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Two big results

I Optional stopping theorem: Can’t make money in
expectation by timing sale of asset whose price is non-negative
martingale.

I Proof: Just a special case of statement about (H · X ) if
stopping time is bounded.

I Martingale convergence: A non-negative martingale almost
surely has a limit.

I Idea of proof: Count upcrossings (times martingale crosses a
fixed interval) and devise gambling strategy that makes lots of
money if the number of these is not a.s. finite. Basically, you
buy every time price gets below the interval, sell each time it
gets above.
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Problems

I Assume a betting market’s prices are continuous martingales.
(Forget about bid-ask spreads, possible longshot bias, bizarre
arbitrage opportunities, discontinuities brought about by
sudden spurts of information, etc.)

I How many primary candidates does one expect to ever exceed
20 percent on a primary nomination market? (Asked by
Aldous.)

I Compute probability of having a martingale price reach a
before b if martingale prices vary continuously.

I Polya’s urn: r red and g green balls. Repeatedly sample
randomly and add extra ball of sampled color. Ratio of red to
green is martingale, hence a.s. converges to limit.
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Theorems (proofs discussed on subsequent slides)

I Lp convergence theorem: If Xn is martingale with
supE |Xn|p <∞ where p > 1 then Xn → X a.s. and in Lp.

I Orthogonal increment theorem: Let Xn be a martingale
with EX 2

n <∞ for all n. If m ≤ n and Y ∈ Fm with
EY 2 <∞, then E

(
(Xn − Xm)Y

)
= 0.

I Cond. variance theorem: If Xn is martingale, EX 2
n <∞ for

all n, then E
(
(Xn − Xm)2|Fm

)
= E (X 2

n |Fm)− X 2
m.

I “Accumulated variance” theorems: Consider martingale
Xn with EX 2

n <∞ for all n. By Doob, can write
X 2
n = Mn + An where Mn is a martingale, and

An =
n∑

m=1

E (X 2
m|Fm−1)−X 2

m−1 =
n∑

m=1

E
(
(Xm−Xm−1)2|Fm−1

)
.

Then E (supm |Xm|2) ≤ 4EA∞. And limn→∞ Xn exists and is
finite a.s. on {A∞ <∞}.
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Lp convergence theorem

I Theorem: If Xn is a martingale with supE |Xn|p <∞ where
p > 1 then Xn → X a.s. and in Lp.

I Proof idea: Have (EX+
n )p ≤ (E |Xn|)p ≤ E |Xn|p for

martingale convergence theorem Xn → X a.s. Use Lp maximal
inequality to get Lp convergence.
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Orthogonality of martingale increments

I Theorem: Let Xn be a martingale with EX 2
n <∞ for all n. If

m ≤ n and Y ∈ Fm with EY 2 <∞, then
E
(
(Xn − Xm)Y

)
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= E
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E
(
(Xn − Xm)Y |Fm

)]
=

E
[
YE
(
(Xn − Xm)|Fm

)]
= 0

I Conditional variance theorem: If Xn is a martingale with
EX 2

n <∞ for all n then
E
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(Xn − Xm)2|Fm
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Square integrable martingales

I Suppose we have a martingale Xn with EX 2
n <∞ for all n.

I We know X 2
n is a submartingale. By Doob’s decomposition,

an write X 2
n = Mn + An where Mn is a martingale, and

An =
n∑

m=1

E (X 2
m|Fm−1)−X 2

m−1 =
n∑

m=1

E
(
(Xm−Xm−1)2|Fm−1

)
.

I An in some sense measures total accumulated variance by
time n.

I Theorem: E (supm |Xm|2) ≤ 4EA∞
I Proof idea: L2 maximal equality gives

E (sup0≤m≤n |Xm|2) ≤ 4EX 2
n = 4EAn. Use monotone

convergence.

18.175 Lecture 19



Square integrable martingales

I Suppose we have a martingale Xn with EX 2
n <∞ for all n.

I We know X 2
n is a submartingale. By Doob’s decomposition,

an write X 2
n = Mn + An where Mn is a martingale, and

An =
n∑

m=1

E (X 2
m|Fm−1)−X 2

m−1 =
n∑

m=1

E
(
(Xm−Xm−1)2|Fm−1

)
.

I An in some sense measures total accumulated variance by
time n.

I Theorem: E (supm |Xm|2) ≤ 4EA∞
I Proof idea: L2 maximal equality gives

E (sup0≤m≤n |Xm|2) ≤ 4EX 2
n = 4EAn. Use monotone

convergence.

18.175 Lecture 19



Square integrable martingales

I Suppose we have a martingale Xn with EX 2
n <∞ for all n.

I We know X 2
n is a submartingale. By Doob’s decomposition,

an write X 2
n = Mn + An where Mn is a martingale, and

An =
n∑

m=1

E (X 2
m|Fm−1)−X 2

m−1 =
n∑

m=1

E
(
(Xm−Xm−1)2|Fm−1

)
.

I An in some sense measures total accumulated variance by
time n.

I Theorem: E (supm |Xm|2) ≤ 4EA∞
I Proof idea: L2 maximal equality gives

E (sup0≤m≤n |Xm|2) ≤ 4EX 2
n = 4EAn. Use monotone

convergence.

18.175 Lecture 19



Square integrable martingales

I Suppose we have a martingale Xn with EX 2
n <∞ for all n.

I We know X 2
n is a submartingale. By Doob’s decomposition,

an write X 2
n = Mn + An where Mn is a martingale, and

An =
n∑

m=1

E (X 2
m|Fm−1)−X 2

m−1 =
n∑

m=1

E
(
(Xm−Xm−1)2|Fm−1

)
.

I An in some sense measures total accumulated variance by
time n.

I Theorem: E (supm |Xm|2) ≤ 4EA∞

I Proof idea: L2 maximal equality gives
E (sup0≤m≤n |Xm|2) ≤ 4EX 2

n = 4EAn. Use monotone
convergence.

18.175 Lecture 19



Square integrable martingales

I Suppose we have a martingale Xn with EX 2
n <∞ for all n.

I We know X 2
n is a submartingale. By Doob’s decomposition,

an write X 2
n = Mn + An where Mn is a martingale, and

An =
n∑

m=1

E (X 2
m|Fm−1)−X 2

m−1 =
n∑

m=1

E
(
(Xm−Xm−1)2|Fm−1

)
.

I An in some sense measures total accumulated variance by
time n.

I Theorem: E (supm |Xm|2) ≤ 4EA∞
I Proof idea: L2 maximal equality gives

E (sup0≤m≤n |Xm|2) ≤ 4EX 2
n = 4EAn. Use monotone

convergence.

18.175 Lecture 19



Square integrable martingales

I Suppose we have a martingale Xn with EX 2
n <∞ for all n.

I Theorem: limn→∞ Xn exists and is finite a.s. on {A∞ <∞}.
I Proof idea: Try fixing a and truncating at time

N = inf{n : An+1 > a2}, use L2 convergence theorem.
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Uniform integrability

I Say Xi , i ∈ I , are uniform integrable if

lim
M→∞

(
sup
i∈I

E (|Xi |; |Xi | > M)
)

= 0.

I Example: Given (Ω,F0,P) and X ∈ L1, then a uniformly
integral family is given by {E (X |F)} (where F ranges over all
σ-algebras contained in F0).

I Theorem: If Xn → X in probability then the following are
equivalent:

I Xn are uniformly integrable
I Xn → X in L1

I E |Xn| → E |X | <∞
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Submartingale convergence

I Following are equivalent for a submartingale:

I It’s uniformly integrable.
I It converges a.s. and in L1.
I It converges in L1.
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Martingale convergence

I Martingale convergence theorem: The following are
equivalent for a martingale:

I It’s uniformly integrable.
I It converges a.s. and in L1.
I It converges in L1.
I There is an integrable random variable X so that

Xn = E (X |Fn).

I This implies that every uniformly integrable martingale can be
interpreted as a “revised expectation given latest information”
sequence.
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Backwards martingales

I Suppose E (Xn+1|Fn) = Xn with n ≤ 0 (and Fn increasing as
n increases).

I Theorem: X−∞ = limn→−∞ Xn exists a.s. and in L1.

I Proof idea: Use upcrosing inequality to show expected
number of upcrossings of any interval is finite. Since
Xn = E (X0|Fn) the Xn are uniformly integrable, and we can
deduce convergence in L1.
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General optional stopping theorem

I Let Xn be a uniformly integrable submartingale.

I Theorem: For any stopping time N, XN∧n is uniformly
integrable.

I Theorem: If E |Xn| <∞ and Xn1(N>n) is uniformly
integrable, then XN∧n is uniformly integrable.

I Theorem: For any stopping time N ≤ ∞, we have
EX0 ≤ EXN ≤ EX∞ where X∞ = limXn.

I Fairly general form of optional stopping theorem: If
L ≤ M are stopping times and YM∧n is a uniformly integrable
submartingale, then EYL ≤ EYM and YL ≤ E (YM |FL).
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Problems

I Classic brainteaser: 52 cards (half red, half black) shuffled
and face down. I turn them over one at a time. At some point
(before last card is turned over) you say “stop”. If subsequent
card is red, you get one dollar. How do you time your stop to
maximize your probability of winning?

I Classic observation: if rn denotes fraction of face-down
cards that are red after n have been turned over, then rn is a
martingale.

I Optional stopping theorem implies that it doesn’t matter
when you say stop. All strategies yield same expected payoff.

I Odds of winning are same for monkey and genius.

I Unless you cheat.

I Classic question: Is this also true of the stock market?
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Martingales as real-time subjective probability updates

I Ivan sees email from girlfriend with subject “possibly serious
news”, thinks there’s a 20 percent chance she’ll break up with
him him by email’s end. Revises number after each line:

I Oh Ivan, I’ve missed you so much! 12

I But there’s something I have to tell you 23

I and please don’t take this the wrong way. 29

I I’ve been spending lots of time with a guy named Robert, 47

I a visiting database consultant on my project 34

I who seems very impressed by my work 23

I and wants me to join his startup in Palo Alto. 38

I Said I’d absolutely have to talk to you first, 19

I that you are my first priority. 7

I But I’m just so confused on so many levels. 15

I Please call me! I love you! Alice 0
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Continuous martingales

I Cassandra is a rational person. She subjective probability
estimates in real time so fast that they can be viewed as
continuous martingales.

I She uses the phrase “I think X” in a precise way: it means
that P(X ) > 1/2.

I Cassandra thinks she will win her tennis match today.
However, she thinks that she will at some point think she
won’t win. She does not think that she will ever think that
she won’t at some point think she will win.

I What’s the probability that Cassandra will win? (Give the full
range of possibilities.)
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