18.175: Lecture 1

Probability spaces, distributions, random variables, measure theory

Scott Sheffield

MIT

Outline

Probability spaces and σ -algebras

Distributions on \mathbb{R}

Extension theorems

Outline

Probability spaces and σ -algebras

Distributions on R

Extension theorems

▶ **Probability space** is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ -algebra) and $P : \mathcal{F} \to [0,1]$ is the probability function.

- ▶ **Probability space** is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ -algebra) and $P: \mathcal{F} \to [0,1]$ is the probability function.
- $ightharpoonup \sigma$ -algebra is collection of subsets closed under complementation and countable unions. Call (Ω, \mathcal{F}) a measure space.

- ▶ **Probability space** is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ -algebra) and $P: \mathcal{F} \to [0,1]$ is the probability function.
- $ightharpoonup \sigma$ -algebra is collection of subsets closed under complementation and countable unions. Call (Ω, \mathcal{F}) a measure space.
- ▶ **Measure** is function $\mu : \mathcal{F} \to \mathbb{R}$ satisfying $\mu(A) \ge \mu(\emptyset) = 0$ for all $A \in \mathcal{F}$ and countable additivity: $\mu(\cup_i A_i) = \sum_i \mu(A_i)$ for disjoint A_i .

- ▶ **Probability space** is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ -algebra) and $P: \mathcal{F} \to [0,1]$ is the probability function.
- $ightharpoonup \sigma$ -algebra is collection of subsets closed under complementation and countable unions. Call (Ω, \mathcal{F}) a measure space.
- ▶ **Measure** is function $\mu : \mathcal{F} \to \mathbb{R}$ satisfying $\mu(A) \ge \mu(\emptyset) = 0$ for all $A \in \mathcal{F}$ and countable additivity: $\mu(\cup_i A_i) = \sum_i \mu(A_i)$ for disjoint A_i .
- Measure μ is **probability measure** if $\mu(\Omega) = 1$.

▶ monotonicity: $A \subset B$ implies $\mu(A) \subset \mu(B)$

- ▶ monotonicity: $A \subset B$ implies $\mu(A) \subset \mu(B)$
- ▶ subadditivity: $A \subset \bigcup_{m=1}^{\infty} A_m$ implies $\mu(A) \leq \sum_{m=1}^{\infty} \mu(A_m)$.

- ▶ monotonicity: $A \subset B$ implies $\mu(A) \subset \mu(B)$
- ▶ subadditivity: $A \subset \bigcup_{m=1}^{\infty} A_m$ implies $\mu(A) \leq \sum_{m=1}^{\infty} \mu(A_m)$.
- ▶ **continuity from below:** measures of sets A_i in increasing sequence converge to measure of limit $\bigcup_i A_i$

- ▶ monotonicity: $A \subset B$ implies $\mu(A) \subset \mu(B)$
- ▶ subadditivity: $A \subset \bigcup_{m=1}^{\infty} A_m$ implies $\mu(A) \leq \sum_{m=1}^{\infty} \mu(A_m)$.
- ▶ **continuity from below:** measures of sets A_i in increasing sequence converge to measure of limit $\bigcup_i A_i$
- **continuity from above:** measures of sets A_i in decreasing sequence converge to measure of intersection $\cap_i A_i$

▶ Uniform probability measure on [0,1) should satisfy **translation invariance:** If *B* and a horizontal translation of *B* are both subsets [0,1), their probabilities should be equal.

- Uniform probability measure on [0,1) should satisfy translation invariance: If B and a horizontal translation of B are both subsets [0,1), their probabilities should be equal.
- ▶ Consider wrap-around translations $\tau_r(x) = (x + r) \mod 1$.

- Uniform probability measure on [0,1) should satisfy translation invariance: If B and a horizontal translation of B are both subsets [0,1), their probabilities should be equal.
- ▶ Consider wrap-around translations $\tau_r(x) = (x + r) \mod 1$.
- ▶ By translation invariance, $\tau_r(B)$ has same probability as B.

- ▶ Uniform probability measure on [0,1) should satisfy **translation invariance:** If B and a horizontal translation of B are both subsets [0,1), their probabilities should be equal.
- ► Consider wrap-around translations $\tau_r(x) = (x + r) \mod 1$.
- ▶ By translation invariance, $\tau_r(B)$ has same probability as B.
- ▶ Call x, y "equivalent modulo rationals" if x y is rational (e.g., $x = \pi 3$ and $y = \pi 9/4$). An **equivalence class** is the set of points in [0,1) equivalent to some given point.

- ▶ Uniform probability measure on [0,1) should satisfy **translation invariance:** If B and a horizontal translation of B are both subsets [0,1), their probabilities should be equal.
- ► Consider wrap-around translations $\tau_r(x) = (x + r) \mod 1$.
- ▶ By translation invariance, $\tau_r(B)$ has same probability as B.
- ▶ Call x, y "equivalent modulo rationals" if x y is rational (e.g., $x = \pi 3$ and $y = \pi 9/4$). An **equivalence class** is the set of points in [0,1) equivalent to some given point.
- ▶ There are uncountably many of these classes.

- Uniform probability measure on [0,1) should satisfy translation invariance: If B and a horizontal translation of B are both subsets [0,1), their probabilities should be equal.
- ► Consider wrap-around translations $\tau_r(x) = (x + r) \mod 1$.
- ▶ By translation invariance, $\tau_r(B)$ has same probability as B.
- ▶ Call x, y "equivalent modulo rationals" if x y is rational (e.g., $x = \pi 3$ and $y = \pi 9/4$). An **equivalence class** is the set of points in [0,1) equivalent to some given point.
- ▶ There are uncountably many of these classes.
- Let $A \subset [0,1)$ contain **one** point from each class. For each $x \in [0,1)$, there is **one** $a \in A$ such that r = x a is rational.

- Uniform probability measure on [0,1) should satisfy translation invariance: If B and a horizontal translation of B are both subsets [0,1), their probabilities should be equal.
- ► Consider wrap-around translations $\tau_r(x) = (x + r) \mod 1$.
- ▶ By translation invariance, $\tau_r(B)$ has same probability as B.
- ▶ Call x, y "equivalent modulo rationals" if x y is rational (e.g., $x = \pi 3$ and $y = \pi 9/4$). An **equivalence class** is the set of points in [0,1) equivalent to some given point.
- ▶ There are uncountably many of these classes.
- Let $A \subset [0,1)$ contain **one** point from each class. For each $x \in [0,1)$, there is **one** $a \in A$ such that r = x a is rational.
- ▶ Then each x in [0,1) lies in $\tau_r(A)$ for **one** rational $r \in [0,1)$.

- ▶ Uniform probability measure on [0,1) should satisfy **translation invariance:** If B and a horizontal translation of B are both subsets [0,1), their probabilities should be equal.
- ► Consider wrap-around translations $\tau_r(x) = (x + r) \mod 1$.
- ▶ By translation invariance, $\tau_r(B)$ has same probability as B.
- ▶ Call x, y "equivalent modulo rationals" if x y is rational (e.g., $x = \pi 3$ and $y = \pi 9/4$). An **equivalence class** is the set of points in [0,1) equivalent to some given point.
- ▶ There are uncountably many of these classes.
- Let $A \subset [0,1)$ contain **one** point from each class. For each $x \in [0,1)$, there is **one** $a \in A$ such that r = x a is rational.
- ▶ Then each x in [0,1) lies in $\tau_r(A)$ for **one** rational $r \in [0,1)$.
- ▶ Thus $[0,1) = \cup \tau_r(A)$ as r ranges over rationals in [0,1).

- ▶ Uniform probability measure on [0,1) should satisfy **translation invariance:** If B and a horizontal translation of B are both subsets [0,1), their probabilities should be equal.
- ▶ Consider wrap-around translations $\tau_r(x) = (x + r) \mod 1$.
- ▶ By translation invariance, $\tau_r(B)$ has same probability as B.
- ▶ Call x, y "equivalent modulo rationals" if x y is rational (e.g., $x = \pi 3$ and $y = \pi 9/4$). An **equivalence class** is the set of points in [0,1) equivalent to some given point.
- ▶ There are uncountably many of these classes.
- ▶ Let $A \subset [0,1)$ contain **one** point from each class. For each $x \in [0,1)$, there is **one** $a \in A$ such that r = x a is rational.
- ▶ Then each x in [0,1) lies in $\tau_r(A)$ for **one** rational $r \in [0,1)$.
- ▶ Thus $[0,1) = \cup \tau_r(A)$ as r ranges over rationals in [0,1).
- If P(A) = 0, then $P(S) = \sum_r P(\tau_r(A)) = 0$. If P(A) > 0 then $P(S) = \sum_r P(\tau_r(A)) = \infty$. Contradicts P(S) = 1 axiom.

▶ 1. Re-examine axioms of mathematics: the very existence of a set A with one element from each equivalence class is consequence of so-called axiom of choice. Removing that axiom makes paradox goes away, since one can just suppose (pretend?) these kinds of sets don't exist.

- ▶ 1. Re-examine axioms of mathematics: the very existence of a set A with one element from each equivalence class is consequence of so-called axiom of choice. Removing that axiom makes paradox goes away, since one can just suppose (pretend?) these kinds of sets don't exist.
- ▶ 2. **Re-examine axioms of probability:** Replace *countable additivity* with *finite additivity*? (Look up Banach-Tarski.)

- ▶ 1. Re-examine axioms of mathematics: the very existence of a set A with one element from each equivalence class is consequence of so-called axiom of choice. Removing that axiom makes paradox goes away, since one can just suppose (pretend?) these kinds of sets don't exist.
- ▶ 2. **Re-examine axioms of probability:** Replace *countable additivity* with *finite additivity*? (Look up Banach-Tarski.)
- 3. Keep the axiom of choice and countable additivity but don't define probabilities of all sets: Restrict attention to some σ-algebra of measurable sets.

- ▶ 1. Re-examine axioms of mathematics: the very existence of a set A with one element from each equivalence class is consequence of so-called axiom of choice. Removing that axiom makes paradox goes away, since one can just suppose (pretend?) these kinds of sets don't exist.
- ▶ 2. **Re-examine axioms of probability:** Replace *countable additivity* with *finite additivity*? (Look up Banach-Tarski.)
- 3. Keep the axiom of choice and countable additivity but don't define probabilities of all sets: Restrict attention to some σ-algebra of measurable sets.
- Most mainstream probability and analysis takes the third approach. But good to be aware of alternatives (e.g., axiom of determinacy which implies that all sets are Lebesgue measurable).

Borel σ -algebra

▶ The **Borel** σ -algebra \mathcal{B} on a topological space is the smallest σ -algebra containing all open sets. In the case of \mathbb{R} , it is the smallest σ -algebra containing all open intervals.

Borel σ -algebra

- ▶ The **Borel** σ -algebra \mathcal{B} on a topological space is the smallest σ -algebra containing all open sets. In the case of \mathbb{R} , it is the smallest σ -algebra containing all open intervals.
- ▶ Say that \mathcal{B} is "generated" by the collection of open intervals.

Outline

Probability spaces and σ -algebras

Distributions on \mathbb{R}

Extension theorems

Outline

Probability spaces and σ -algebras

Distributions on \mathbb{R}

Extension theorems

▶ Write $F(a) = P((-\infty, a])$.

- ▶ Write $F(a) = P((-\infty, a])$.
- ▶ **Theorem:** for each right continuous, non-decreasing function F, tending to 0 at $-\infty$ and to 1 at ∞ , there is a unique measure defined on the Borel sets of \mathbb{R} with P((a,b]) = F(b) F(a).

- Write $F(a) = P((-\infty, a])$.
- ▶ **Theorem:** for each right continuous, non-decreasing function F, tending to 0 at $-\infty$ and to 1 at ∞ , there is a unique measure defined on the Borel sets of \mathbb{R} with P((a,b]) = F(b) F(a).
- ▶ If we're given such a function F, then we know how to compute the measure of any set of the form (a, b].

- Write $F(a) = P((-\infty, a])$.
- ▶ **Theorem:** for each right continuous, non-decreasing function F, tending to 0 at $-\infty$ and to 1 at ∞ , there is a unique measure defined on the Borel sets of $\mathbb R$ with P((a,b]) = F(b) F(a).
- ▶ If we're given such a function F, then we know how to compute the measure of any set of the form (a, b].
- We would like to *extend* the measure defined for these subsets to a measure defined for the whole σ algebra generated by these subsets.

- Write $F(a) = P((-\infty, a])$.
- ▶ **Theorem:** for each right continuous, non-decreasing function F, tending to 0 at $-\infty$ and to 1 at ∞ , there is a unique measure defined on the Borel sets of \mathbb{R} with P((a,b]) = F(b) F(a).
- ▶ If we're given such a function F, then we know how to compute the measure of any set of the form (a, b].
- We would like to extend the measure defined for these subsets to a measure defined for the whole σ algebra generated by these subsets.
- ▶ Seems clear how to define measure of countable union of disjoint intervals of the form (a, b] (just using countable additivity). But are we confident we can extend the definition to all Borel measurable sets in a consistent way?

Outline

Probability spaces and σ -algebras

Distributions on \mathbb{R}

Extension theorems

Outline

Probability spaces and σ -algebras

Distributions on R

Extension theorems

Algebras and semi-algebras

▶ algebra: collection A of sets closed under finite unions and complementation.

- ▶ algebra: collection A of sets closed under finite unions and complementation.
- ▶ measure on algebra: Have $\mu(A) \ge \mu(\emptyset) = 0$ for all A in A, and for disjoint A_i with union in A we have $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$ (countable additivity).

- algebra: collection A of sets closed under finite unions and complementation.
- ▶ measure on algebra: Have $\mu(A) \ge \mu(\emptyset) = 0$ for all A in A, and for disjoint A_i with union in A we have $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$ (countable additivity).
- ▶ Measure μ on \mathcal{A} is σ -**finite** if exists countable collection $A_n \in \mathcal{A}$ with $\mu(A_n) < \infty$ and $\cup A_n = \Omega$.

- ▶ algebra: collection A of sets closed under finite unions and complementation.
- ▶ measure on algebra: Have $\mu(A) \ge \mu(\emptyset) = 0$ for all A in A, and for disjoint A_i with union in A we have $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$ (countable additivity).
- ▶ Measure μ on \mathcal{A} is σ -**finite** if exists countable collection $A_n \in \mathcal{A}$ with $\mu(A_n) < \infty$ and $\cup A_n = \Omega$.
- ▶ **semi-algebra**: collection S of sets closed under intersection and such that $S \in S$ implies that S^c is a finite disjoint union of sets in S. (Example: empty set plus sets of form $(a_1, b_1] \times \ldots \times (a_d, b_d] \in \mathbb{R}^d$.)

- ▶ algebra: collection A of sets closed under finite unions and complementation.
- ▶ measure on algebra: Have $\mu(A) \ge \mu(\emptyset) = 0$ for all A in A, and for disjoint A_i with union in A we have $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$ (countable additivity).
- ▶ Measure μ on \mathcal{A} is σ -**finite** if exists countable collection $A_n \in \mathcal{A}$ with $\mu(A_n) < \infty$ and $\cup A_n = \Omega$.
- ▶ **semi-algebra**: collection S of sets closed under intersection and such that $S \in S$ implies that S^c is a finite disjoint union of sets in S. (Example: empty set plus sets of form $(a_1, b_1] \times \ldots \times (a_d, b_d] \in \mathbb{R}^d$.)
- ▶ One lemma: If S is a semialgebra, then the set \overline{S} of finite disjoint unions of sets in S is an algebra, called the **algebra** generated by S.

▶ Say collection of sets \mathcal{P} is a π -system if closed under intersection.

- ▶ Say collection of sets \mathcal{P} is a π -system if closed under intersection.
- ▶ Say collection of sets \mathcal{L} is a λ -system if

- ▶ Say collection of sets \mathcal{P} is a π -system if closed under intersection.
- ▶ Say collection of sets \mathcal{L} is a λ -system if
 - \mathbf{P} $\Omega \in \mathcal{L}$

- ▶ Say collection of sets \mathcal{P} is a π -system if closed under intersection.
- ▶ Say collection of sets \mathcal{L} is a λ -system if
 - \mathbf{P} $\Omega \in \mathcal{L}$
 - ▶ If $A, B \in \mathcal{L}$ and $A \subset B$, then $B A \in \mathcal{L}$.

- ▶ Say collection of sets \mathcal{P} is a π -system if closed under intersection.
- ▶ Say collection of sets \mathcal{L} is a λ -system if
 - \mathbf{P} $\Omega \in \mathcal{L}$
 - ▶ If $A, B \in \mathcal{L}$ and $A \subset B$, then $B A \in \mathcal{L}$.
 - ▶ If $A_n \in \mathcal{L}$ and $A_n \uparrow A$ then $A \in \mathcal{L}$.

- ▶ Say collection of sets \mathcal{P} is a π -system if closed under intersection.
- ▶ Say collection of sets \mathcal{L} is a λ -system if
 - \mathbf{P} $\Omega \in \mathcal{L}$
 - ▶ If $A, B \in \mathcal{L}$ and $A \subset B$, then $B A \in \mathcal{L}$.
 - ▶ If $A_n \in \mathcal{L}$ and $A_n \uparrow A$ then $A \in \mathcal{L}$.
- ► THEOREM: If \mathcal{P} is a π -system and \mathcal{L} is a λ -system that contains \mathcal{P} , then $\sigma(\mathcal{P}) \subset \mathcal{L}$, where $\sigma(\mathcal{A})$ denotes smallest σ -algebra containing \mathcal{A} .

Caratheéodory Extension Theorem

▶ **Theorem:** If μ is a σ -finite measure on an algebra \mathcal{A} then μ has a unique extension to the σ algebra generated by \mathcal{A} .

Caratheéodory Extension Theorem

- ▶ **Theorem:** If μ is a σ -finite measure on an algebra \mathcal{A} then μ has a unique extension to the σ algebra generated by \mathcal{A} .
- Detailed proof is somewhat involved, but let's take a look at it.

Caratheéodory Extension Theorem

- ▶ **Theorem:** If μ is a σ -finite measure on an algebra \mathcal{A} then μ has a unique extension to the σ algebra generated by \mathcal{A} .
- Detailed proof is somewhat involved, but let's take a look at it.
- We can use this extension theorem prove existence of a unique translation invariant measure (Lebesgue measure) on the Borel sets of \mathbb{R}^d that assigns unit mass to a unit cube. (Borel σ -algebra \mathcal{R}^d is the smallest one containing all open sets of \mathbb{R}^d . Given any space with a topology, we can define a σ -algebra this way.)

Extension theorem for semialgebras

Say $\mathcal S$ is semialgebra and μ is defined on $\mathcal S$ with $\mu(\emptyset=0)$, such that μ is finitely additive and countably subadditive. [This means that if $S\in\mathcal S$ is a finite disjoint union of sets $S_i\in\mathcal S$ then $\mu(S)=\sum_i\mu(S_i)$. If it is a countable disjoint union of $S_i\in\mathcal S$ then $\mu(S)\leq\sum_i\mu(S_i)$.] Then μ has a unique extension $\bar\mu$ that is a measure on the algebra $\overline{\mathcal S}$ generated by $\mathcal S$. If $\bar\mu$ is sigma-finite, then there is an extension that is a measure on $\sigma(S)$.